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Abstract

Next-token prediction serves as the foundational learning task enabling reasoning
in LLMs. But what should the learning task be when aiming to equip MLLMs
with temporal reasoning capabilities over video inputs? Existing tasks such as
video question answering often rely on annotations from humans or much stronger
MLLMs, while video captioning tends to entangle temporal reasoning with spatial
information. To address this gap, we propose next-event prediction (NEP), a
learning task that harnesses future video segments as a rich, self-supervised signal
to foster temporal reasoning. We segment each video into past and frames:
the MLLM takes the past frames as input and predicts a summary of events derived
from the future frames, thereby encouraging the model to reason temporally in
order to complete the task. To support this task, we curate V1-33K, a dataset
comprising 33,000 automatically extracted video segments spanning diverse real-
world scenarios. We further explore a range of video instruction-tuning strategies
to study their effects on temporal reasoning. To evaluate progress, we introduce
FutureBench to assess coherence in predicting unseen future events. Experiments
validate that NEP offers a scalable and effective training paradigm for fostering
temporal reasoning in MLLMs.

1 Introduction

Recent progress in multimodal large language models (MLLMs) has significantly advanced video
understanding capabilities [ 16, 34]. Video instruction tuning typically involves learning tasks such
as video question answering, captioning, and grounding, which emphasize visual perception skills
like object identification, event recognition, and factual recall based on observed video frames [3, 19,
22, 44]. While these tasks facilitate cross-modal alignment—an essential step in integrating visual
encoders with language models [23]—they often neglect the femporal dimension that distinguishes
videos from static images. For instance, video question answering frequently relies on key frames [9],
and video captioning tends to entangle temporal clues with spatial information, limiting the model’s
ability to understand dynamic event progression. Moreover, tasks like question answering and
grounding typically require video-text pairs annotated by humans or much stronger MLLMs, raising
scalability challenges. This leads to a natural question:

What learning task should be employed to effectively equip MLLMs with temporal
reasoning capabilities over video inputs?
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Figure 1: Comparison of Video Instruction Tuning tasks. (1) Video Q&A: Extracting answers
from a single key frame; (2) Captioning: Summarizing from frame-by-frame visual perception of
observed videos; (3) Next-Event Prediction: Predicting the summary of future frames by visual
perception of observed past frames and temporal reasoning with commonsense knowledge. As the
example in the given first part video, after a defensive stop, the team may push fast in transition
(knowledge)—but with under two minutes left in the fourth quarter (visual facts), a coach might call
a timeout, or the players may slow the tempo to ensure careful execution.

To bridge this gap, we propose Next-Event Prediction (NEP), a self-supervised learning task
explicitly designed to foster temporal reasoning in MLLMs. Instead of providing the entire video as
input, NEP segments each video into past and future frames. The model is then tasked with predicting
events that unfold in the future segment based solely on the past frames, as illustrated in Figure 1.
NEP encourages MLLMs to reason beyond the visible scene, enabling inference about causes, effects,
and likely outcomes. Moreover, NEP naturally requires the model to integrate visual perception with
pretrained commonsense knowledge, thereby enriching its understanding of dynamic visual events.
To efficiently construct the NEP dataset, we leverage automatically generated captions from future
frames as supervision, eliminating the need for costly human annotations.

To systematically evaluate the effectiveness of NEP as an advanced learning task, we introduce V1-
33K, a large-scale dataset comprising approximately 33,000 automatically curated video instances
tailored for NEP. Each instance consists of an observed video segment paired with a summary of its
subsequent continuation, serving as the ground-truth target. V1-33K spans a wide range of content
domains and temporal complexities, from simple, short clips to intricate, multi-step scenarios. This
diversity effectively challenges MLLLMs to perform both immediate and long-term temporal reasoning.

Moreover, we conduct extensive experiments using a range of instruction-tuning strategies to imple-
ment NEP, including standard supervised fine-tuning (SFT) [25], critique fine-tuning (CFT) [36],
teacher model distillation (Distill) [15], and a mixed-tuning approach (Mix) that combines these meth-
ods. To rigorously assess the temporal reasoning capabilities of MLLMs, we introduce FutureBench,
a comprehensive benchmark designed to evaluate logical coherence and causal consistency in predict-
ing unseen future events. FutureBench challenges models to perform multi-hop temporal reasoning
by generating plausible event sequences that bridge observed video segments and specified future
outcomes. Empirically, our results show that incorporating NEP as a learning task significantly
enhances MLLMs’ temporal understanding and reasoning, while preserving their performance on
conventional video tasks involving spatial comprehension. Due to the limited space, we defer the
discussion of Related Work to Appendix A.

2 Next-Event Prediction

Our method centers on incorporating NEP as a learning task for MLLMs. In this section, we first
formalize the NEP task, followed by the description of our V1-33K dataset construction through a
four-stage pipeline. Finally, we outline the training strategies that make this self-supervised signal
effective for improving temporal understanding and reasoning.

2.1 Formulation

We formulate NEP in a video as a sequence-to-sequence language modeling problem conditioned

on video frames. Supposing V' = [v1,vq, ..., vr] represents a sequence of video frames (or clips),
a cut-off time ¢ < T is chosen to split the full video into an observed part V<, = [v1, ..., v;] (past
frames) and a future part V¢ = [v441, ..., vr] (future frames). The goal is to train an MLLM that
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Figure 2: Reasoning structure underlying Figure 3: Distribution of data source and video
NEP. Each node is a potential event or action length in V1-33K.The inner circle illustrates the
derived from visual cues, branching into alterna-  distribution of data sources. The outer circle fur-
tive scenarios such as failing to defend or being  ther segments each source according to video
pushed in transition. The red line highlights ac- length categories. Only length categories com-
tual event sequence observed in the video. Com-  prising more than 4% of the dataset are labeled
ments provide reasoning for less likely scenarios.  explicitly in the outer circle.

takes V<, as input and generates a textual summary Y of events in V<. In practice, Y can be simply
represented by the token sequence of captions in future frames.

This task design naturally leverages the temporal nature of video. By using the description of
unseen future frames as the prediction target, it offers a richer self-supervised signal due to the
easy acquisition of video captions, eliminating the need for costly human annotations. Given that
MLLM is required to generate a coherent, extended description of unseen future events, simple
visual perception such as mere object detection or current-action recognition is not enough for NEP.
Instead, it signifies the inference of event dynamics and the integration of visual understanding and
commonsense knowledge. Visual cues alone rarely explicitly indicate future outcomes, forcing the
model to draw on general world knowledge, such as physics, social norms, and human behaviors,
to anticipate plausible next events. Consequently, the model is expected to be engaged in multiple
reasoning steps similar to planning, internally hypothesizing and verifying plausible future scenarios
based on the observed context. Despite the existence of multiple plausible next events, the model
is supposed to predict the most likely or reasonable outcomes derived from the visual cues and
world knowledge. Internally, the model learns to reason: “Given what I've observed, what plausible
events might occur next?” By learning with NEP, the model implicitly acquires temporal coherence
and causality understanding—abilities difficult to develop from static video descriptions alone, yet
essential for complex video understanding and reasoning.

2.2 A Chain-of-Thought Inspired Training Task for Video Temporal Understanding

Next event prediction represents a more advanced task, analogous to reasoning in LLMs. When
a model is presented with the first part of a video sequence, it first extracts essential visual facts,
such as the positions of objects, movements, and their interactions. Then, crucially, it integrates
these visual observations with the extensive commonsense knowledge learned during its pre-training.
This interaction between visual evidence and world knowledge allows the model to systematically
hypothesize potential future scenarios.

This process closely mirrors the chain-of-thought and tree-of-thought reasoning employed by
LLMs [37, 40], especially in complex problem-solving scenarios such as mathematical reason-
ing. In these contexts, LLMs explicitly produce intermediate steps, such as calculations or logical
inferences, each serving as a foundation for subsequent reasoning [30]. Similarly, an MLLM gener-
ates intermediate logical deductions based on visual observations; for instance, as shown in Figure 2,
reasoning that “if a player approaches the basket unguarded, a successful layup is likely” Each
of these deductions informs subsequent predictions, establishing a coherent reasoning pathway.
Moreover, this approach conceptually parallels reasoning strategies found in reinforcement learning
and planning algorithms like Monte Carlo tree search [41]. Both methodologies systematically
evaluate intermediate states and potential outcomes to predict future actions or scenarios. Likewise,
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Figure 4: Overview of the four-stage V1-33K construction pipeline: Fact Translation, Analysis,
Segmentation, and Reasoning & Critique.

video future prediction involves implicitly considering various potential future states informed by
current observations and pre-learned commonsense knowledge. Even if the exact future diverges, the
underlying reasoning process teaches generalizable patterns, for instance, predicting likely reactions
or outcomes given particular initial conditions. Training rewards the model for predicting actual
observed futures, reinforcing realistic cause-and-effect pattern learning over time.

2.3 V1-33K Construction Pipeline

To facilitate the learning on the NEP task, we introduce the V1-33K dataset. We design a simple but
effective pipeline that automatically converts raw videos for training on NEP. The entire pipeline, as
illustrated in Figure 4, consists of four stages:

Fact Translation converts visual content into detailed textual captions using a vision-language model,
enabling strong text-based reasoning capabilities. During Analysis, these captions are processed by
LLMs to identify distinct scenes and determine optimal split points based on causal relationships.
The Segmentation stage uses these optimal points to divide videos into initial segments for model
input and subsequent segments for ground truth evaluation. Finally, in Reasoning & Critique, the
initial caption segments are processed by a text reasoning model to generate predictions and reasoning
traces, which are then critically assessed by another LLM. This critique-based refinement ensures
robust reasoning for the final training of the MLLM, enhancing its performance.

Following this pipeline, we processed thousands of videos from diverse sources (e.g. YouTube,
YouCook2, NextQA, Charades and ActivityNet) to compile the V1-33K dataset comprising 33,000
pairs (past + future). The dataset covers a wide range of scenarios: physical events (spills, collisions,
object interactions), human interactions (arguments leading to reactions, pranks leading to surprises),
sports (a setup leading to a goal or failure), and more. The detail of data distribution is shown in
Figure 3. Notably, all supervision is derived automatically; the descriptions of future events are
essentially model-generated captions for the later segments, but filtered and validated through our
pipeline to ensure correctness and relevance.

2.4 Video Instruction-Tuning Strategies

We investigate four video instruction-tuning strategies on the NEP task. Each training strategy
leverages specific annotations and structures from the V1-33K data pipeline, from ground-truth next
event descriptions to critique and reasoning traces. We consider the encoder-decoder architecture
model akin to recent MLLMs, Llava [23], where a vision encoder £ processes the video frames and
produces a sequence of visual embeddings, and a language decoder D attends to these embeddings to
generate text. Specifically, for each input video V<;, E extracts frame features, and these features are
fed into D through a cross-attention mechanism. The decoder is then prompted to output the next
event description. During training, we supervise D to match the ground truth event description using
a standard language modeling loss, cross-entropy over the next token. We explore four distinct Video
Instruction-Tuning strategies, supervised fine-tuning (SFT), critique fine-tuning (CFT), distillation
tuning (Distill), and mix tuning (Mix), leveraging ground-truth video caption, critiques from GPT, and
structured reasoning traces from DeepSeek. Details of tuning strategies are provided in Appendix C.
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Figure 5: Task demonstration of FutureBench. This figure presents two paradigms for future event
prediction: Extrapolation and Interpolation. In the Extrapolation task (Top), the model observes the
initial video (Current Event) and is required to sequentially predict a series of future events (Caption
1 — Caption 2 — Caption 3 — ...) leading up to the final event (Caption N). In the Interpolation
task (Bottom), the model observes the initial video (Current Event) and is provided with the first
future event (Caption 1), an anchor future event (Caption K), and the final event (Caption N) and
must infer the most plausible intermediate events that bridge the temporal gap. Distractors involve
Caption 0 of the current event to require the model to understand the given video. Questions and
answer options above are simplified for clarity and brevity.

3 FutureBench

To advance the evaluation of MLLMs in temporal reasoning—specifically in forecasting future events
from observed video—we introduce FutureBench, a benchmark designed to assess models’ ability
to infer plausible event progressions leading to a specified outcome. Closely aligned with the NEP
objective, this task demands both strong visual perception and commonsense reasoning. Unlike prior
video Q&A benchmarks, which focus on answer extraction from visible frames [6, 39], FutureBench
emphasizes temporal-causal reasoning toward achieving unobserved future goals.

We formalize the evaluation task in a multiple-choice question-answering format. Each video segment
in FutureBench is paired with a clearly defined task goal or event outcome — termed an anchor —
which is derived from the final state of the full video. This design reflects the principle that real-world
narratives typically follow goal-driven trajectories, and it serves to constrain the searching space
of potential future events. Given the anchor, the model is required to reason both backwards and
forwards to deduce the plausible intermediate steps or events that culminate in the specified outcome.

3.1 Multi-Hop Prediction Settings

A defining characteristic of FutureBench is its structured division into tasks with varying logical-hop
distances, that is, the number of inferential steps or missing events the MLLM must predict. This
design enables a comprehensive evaluation of both in-distribution performance on single-hop (1-hop)
reasoning tasks and out-of-distribution generalization to more complex multi-hop reasoning involving
extended event sequences. Accordingly, FutureBench is organized into two primary subtasks:

Future Event Prediction—Extrapolation. The extrapolation requires the model to predict a
sequence of future events that logically connect the initial observed scenes to a specified final outcome.
The task difficulty is controlled by varying the number of missing events, ranging from one to three:

* 1-Hop: The model predicts a single future event that directly links the observed scenes to the
final one. This corresponds to a standard NEP.

» 2-Hop: The model infers a sequence of two consecutive future events, requiring a short chain
reasoning process that sequentially connects the observed scenes to the final event.

» 3-Hop: The model predicts three consecutive future events, significantly increasing task complex-
ity by necessitating deeper causal reasoning across a longer temporal span.



Table 1: Performance comparison across different video instruction tuning tasks on Qwen2.5-
VL-7B-Instruct. G-Avg. and T-Avg. represent the average performances of all general and temporal
benchmarks, respectively. Instruct represents the original performances without additional training.

Task General Benchmark Temporal Benchmark
VMMEwoswy MVB  LVByy  G-Avg. | TB TC SB-R1 FB T-Avg.

Instruct 59.8 65.3 55.9 603 | 354 738 37.1 52.6 49.7

Full Observed Video

Captioning 60.6 66.2 532 60.0 37.0 722 33.6 55.8 49.7

MCQA 57.4 65.2 53.0 58.5 32.1 655 33.0 60.3 47.7

OEQA 59.8 66.8 54.6 60.4 36.6 74.0 354 58.8 51.2

Partially Observed Video

NEP 60.0 66.5 56.3 60.9 | 386 74.7 39.5 61.3 53.5

Future Event Prediction—Interpolation. The interpolation subtask introduces a complementary
challenge wherein the model must infer multiple non-consecutive future events, given a set of partially
observed scenes that include intermediate anchor events. Rather than constructing a continuous
sequence — as in extrapolation — this task demands the model interpolate across disjoint glimpses
of future events. It emphasizes reasoning over causal continuity and temporal coherence amid
fragmentary observation, as illustrated in Figure 5.

3.2 Question-Answer Generation

Designing high-quality questions and answer choices for FutureBench presents a non-trivial challenge,
as it demands capturing the nuanced temporal logic embedded in each narrative. To scale the
generation of QA pairs, we adopt a LLM-based generation pipeline. Specifically, we construct
another distinct video dataset from V1-33K, following the same processing pipeline illustrated in
Figure 4. Using this video dataset, we employ GPT-4 (text-only mode) to generate QA pairs from
detailed video annotations. Each video is accompanied by rich textual metadata, including a synopsis,
segment-level scene descriptions, a specification of the observed scenes (i.e., the initial context), and
a description of the final scene (i.e., the target outcome). We then prompt GPT-4 using a structured
template designed to emulate a human question-setter. The prompt instructs GPT-4 to formulate
a question that probes for the missing future events and to generate a correct answer along with
several plausible yet incorrect distractors. To ensure that the question requires genuine reasoning,
the prompt explicitly references the need to achieve a final outcome and is carefully crafted to
prevent shortcut solutions — for examples, by avoiding lexical overlap between the correct answer
and question, or easily dismissible distractors. Additionally, the distractor choices are constructed to
be commonsense-plausible within the thematic context of the video but logically inconsistent with
the outcome trajectory, thereby increasing task difficulty. An illustrative example of this process is
shown in Figure 5, and the full prompt used for GPT-4 is provided in Appendix D.

Human-in-the-loop Quality Review. Following automatic generation, all QA items undergo a
verification and filtering process. Items deemed too trivial — such as those with answers directly
inferable from a single frame or with implausible distractors — are discarded. QA pairs requiring
minor corrections are edited to ensure semantic coherence and alignment with the underlying video
narrative. This human-in-the-loop review process allows us to maintain high annotation quality while
leveraging GPT-4 to scale data generation efficiently.

As a result, FutureBench comprises a total 1056 carefully curated QA pairs spanning both extrap-
olation and interpolation subtasks. To assess the benchmark’s quality and highlight both visual
perception and temporal reasoning, we evaluate a strong reasoning model, o4-mini, on the text-only
version of questions, excluding any visual input. The model achieves an accuracy of 32.0%, sug-
gestion that even advanced reasoning capabilities alone are insufficient for consistently solving the
tasks. This finding reinforces the critical role of visual perception in solving future event prediction
in FutureBench. More details regarding dataset distribution can be found in Appendix B.



¢ Induction Video Prediction (Video Q&A):

¢ Deduction Video Prediction (Next Event Prediction):
“<First Part Video> What will happen next?”

¢ Abduction Video Prediction (Previous Event Prediction):
“<Second Part Video> What happened beforehand?”

Figure 6: Three types of logic reasoning in video instruction tuning tasks. (1) (Video
Q&A): The model watches entire video sequences and learns common event patterns and temporal
relationships, building an internal “engine” of how visual events unfold over time. (2)

(Next Event Prediction): Given the first part of a video, the model uses its learned causal and
commonsense knowledge to extrapolate and predict the most likely next events. (3)

(Previous Event Prediction): Presented with the final segment of a video, the model reasons backward
to hypothesize plausible prior events or hidden causes that explain the observed outcome.

4 Experiment

4.1 Comparison Across Video Instruction Tuning Tasks

To investigate the effectiveness of NEP as a learning task, we fine-tune Qwen2.5-VL-7B-Instruct
on NEP and compare its performance against models trained on three prior instruction tuning tasks:
captioning, multi-choice question answering (MCQA), and open-ended question answering (OEQA).
For fairness, all models are trained on a dataset of equal size using 3K samples. For the captioning,
MCQA and OEQA, we use the data constructed by LLaVA-Video-178K [42].

To comprehensively evaluate model performance, we consider two groups of benchmarks. First,
we assess general video understanding on three widely-used benchmarks that are not specifically
designed to test temporal reasoning: VideoMME (/o suby (VMME) [11], MVBench (MVB) [20], and
LongVideoBench,,(LVB) [38]. Second, to examine temporal understanding and reasoning capabili-
ties, we evaluate on four temporally-focused benchmarks: TemporalBench (TB) [5], TempCompass
(TC) [24], SeedBench-R1 (SB-R1) [6], and our proposed FutureBench (FB). These benchmarks
challenge models to make complex temporal understanding and reasoning. For all evaluations, we
use 32 frames from the video as the input by default. Detailed training and evaluation descriptions
can be found in Appendix E.

Next-event prediction enhances temporal reasoning without sacrificing general video under-
standing. As shown in Table 1, models trained on the NEP task with partially observed video
demonstrate substantial improvements on temporal benchmarks compared to those trained on Cap-
tioning, MCQA, and OEQA tasks with the full observed video. Notably, NEP-trained models also
maintain competitive performance on general benchmarks, underscoring the superiority and com-
patibility of the NEP task. These findings suggest that NEP not only strengthens a model’s ability
to reason over temporal sequences but does so without compromising its overall comprehension
abilities. NEP serves as an effective learning signal that promotes both visual perception and temporal
reasoning with minimal trade-offs in general performance.

Deductive reasoning via next-event prediction yields greater improvements on temporal bench-
marks compared to inductive (video Q&A) and abductive (previous-event prediction) reasoning.
Figure 6 delineates the three classical forms of logical reasoning: induction, deduction, and abduc-
tion [10, 8] within the context of video instruction tuning. These reasoning paradigms correspond to
distinct task formulations: video Q&A (induction), next-event prediction (deduction), and previous-
event prediction (abduction). To study the relative efficacy of these reasoning types, we fine-tune the



Table 2: Performance comparison of different instruction tuning strategies. G-Avg. and T-Avg.
represent the average performances of all general and temporal benchmarks, respectively. Instruct
represents the original performances without additional training.

Models General Benchmark Temporal Benchmark
VMMEw/o sy MVB  LVByy  G-Avg. | TB TC SB-R1 FB T-Avg.

Qwen2.5-VL-3B-Instruct

Instruct 55.7 63.8 52.2 57.2 \ 30.8 69.3 33.2 49.9 45.8
SFT 55.8 62.8 50.4 56.3 343 61.5 35.7 61.1 48.2
CFT 55.6 63.1 50.9 56.5 32.6 68.5 34.6 50.1 46.5
Distill 56.2 64.5 53.5 58.1 339 69.1 33.6 57.2 48.4
Mix 56.6 64.6 52.4 57.9 348 66.5 35.7 56.9 48.5
Qwen2.5-VL-7B-Instruct

Instruct 59.8 65.3 55.9 60.3 \ 354 73.8 37.1 52.6 49.7
SFT 59.2 66.5 53.4 59.7 399 699 39.1 61.3 52.6
CFT 58.9 65.3 54.2 59.5 352 741 39.8 55.8 51.2
Distill 60.6 66.7 56.3 61.2 359 751 37.0 59.5 51.9
Mix 59.6 66.4 53.7 59.9 382 729 38.5 63.4 53.3

Qwen2.5-VL-7B-Instruct model using the same training set of 3K samples, modifying only the task
formulation to align with each reasoning. The results presented in Table 3 indicate that the deduc-
tion task, next event prediction, yields significantly greater performance on temporal benchmarks
compared to induction and abduction tasks. In contrast to induction and abduction, deduction often
involves the deliberate application of abstract logical principles. Such reasoning tends to be more
cognitively demanding and typically necessitates targeted learning and structured practice [13, 4].

4.2 Comparison of Instruction Tuning Strategies

To further explore effective strategies for training on the NEP task, we compare four instruction
tuning approaches introduced in Section 2.4: supervised fine-tuning (SFT), contrastive fine-tuning
(CFT), distillation (Distill), and mix tuning (Mix). We conduct experiments on both Qwen2.5-VL-3B-
Instruct and Qwen2.5-VL-7B-Instruct, evaluating each strategy across general and temporal video
benchmarks. Additionally, we study the impact of training set size by scaling SFT and Distill from
1K to 25K samples, and CFT and Mix from 1K to 10K samples.

SFT serves as a simple but effective strategy for NEP training. As shown in Table 2, simple SFT
yields substantial gains on temporal benchmarks, demonstrating its efficacy for NEP. While CFT and
Distill also contribute notable improvements, they rely on additional annotations or feedback from
auxiliary LLMs, making them less efficient in comparison to SFT. Importantly, Mix strategy achieves
the highest average performance on temporal benchmarks, effectively combining the strengths of all
tuning methods. We hypothesize that this is due to the complementary nature of supervision signals:
SFT provides direct supervision via ground-truth next events, while CFT and Distill introduce richer
semantic feedback through model-generated guidance. This diversity likely enables the model to
better generalize in temporal prediction tasks.

Scaling the training size does not consistently improve performance. As illustrated in Figure 7,
increasing the training data beyond 5K samples does not uniformly improve performance across
tuning strategies, in some cases, even leads to degradation on both general and temporal benchmarks.
We attribute this to potential distribution shifts introduced by large-scale NEP training alone, which
may cause the model to overfit or deviate from balanced general understanding. This observation
suggests that while NEP is a valuable training task, careful mixture and selection of data scale is
necessary to avoid diminishing returns or adverse effects on model generalization.
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Table 3: Performance comparison of inductive, Table 4: Performance comparison of SFT and
deductive, and abductive tasks on temporal GRPO with NEP. G-Avg.: average performance
benchmarks. PEP: Previous Event Prediction. of general benchmarks. Interp.: Interpolation task.

Temporal Benchmark General FutureBench

B TC SB-RI FB G-Avg. |1-Hop 2-Hop|3-Hop Interp.
Inductive (Video QA) 36.6 740 354 58§ mstruct 60.3 | 561 575 | 498 505
Deductive (NEP) 38.6 747 395 613 NEP+SFT 59.7 67.6 642 | 5777 593
Abductive (PEP) 380 662 312 551 NEP+GRPO 582 | 838 81.3 | 62.7 65.2

4.3 Reinforcement Learning with Next-Event Prediction

Reinforcement learning (RL) represents an alternative and essential learning paradigm for enhancing
reasoning capabilities. To systematically examine the impact of RL-based training of NEP on both
general and temporal video understanding, we construct a dedicated training set comprising 2,000
multi-choice QA pairs. This training set is generated using the same pipeline as FutureBench,
but is derived from the V1-33K video dataset and restricted to 1-hop and 2-hop extrapolation
tasks. Consequently, the 3-hop extrapolation task is treated as an out-of-distribution (OOD) setting,
designed to assess model generalization to longer, unseen causal chains. Similarly, the interpolation
task (Interp.) presents an additional OOD challenge, requiring the model to reason over fragmented
future context. In this experiment, we train the Qwen-2.5-VL-7B-Instruct using Group Relative
Policy Optimization (GRPO) [28] with the outcome supervision and evaluate its performance across
both general and temporally-focused video benchmarks.

RL generalizes well on FutureBench but degrades performance on general benchmarks. As
shown in Table 4, the GRPO-trained model demonstrates strong performance improvement on in-
distribution tasks and generalizes well to OOD tasks, including 3-hop questions and interpolation tasks.
These results underscore the effectiveness of RL training in the future event prediction task. However,
it is also notable that the RL-trained model suffers from non-trivial performance degradation on
general video understanding benchmarks. This suggests that while RL training promotes a reasoning
style suited for future event prediction, it may pose inductive biases that hinder generalizability to
tasks not requiring future-oriented prediction. Furthermore, we observe instances of reward hacking,
wherein RL training with multi-choice QA and outcome supervision may encourage models to exploit
superficial patterns, such as lexical similarity between answer options and the question text, to arrive



at correct answers. Such behavior deviates from our initial motivation and this shortcut undermines
the intended objective of next-event prediction, which is to foster integrated visual perception and
causal reasoning. Given these limitations, we highlight that SFT remains a simple yet efficient
approach for training on NEP.

5 Conclusion

In this work, we propose next-event prediction, a self-supervised learning task designed specifically
to improve temporal reasoning capabilities in MLLMs. By dividing videos into past and future
frames, NEP forces models to predict unseen future events, enabling models to implicitly build robust
internal representations of causal and narrative dynamics. To study NEP and facilitate research in this
area, we created V1-33K, a large dataset of approximately 33,000 video instances that cover a wide
range of real-world scenarios and temporal complexities. Furthermore, we proposed FutureBench, a
comprehensive benchmark that assesses models’ ability to generate logically coherent and causally
consistent future event predictions. Experiments show that incorporating NEP significantly improves
MLLMs’ temporal reasoning capabilities while maintaining their performance on traditional video
understanding tasks. We believe that NEP lays a foundation for advancing temporal understanding in
MLLMs, bridging the gap between static visual description and temporal event inference.
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A Appendix: Related work

Video Instruction-Tuning of MLLMs. The fusion of vision and language in large models has
advanced rapidly from image-focused models like CLIP [26] and LLaVA [23] to recent video-
language models that interpret dynamic visual content leveraging the advanced ability of LLMs [21,
32]. Early approaches adapted image-based techniques by fine-tuning LLMs with an extended visual
encoder on video frames for observational tasks, such as captioning and question answering; this
process is also known as video instruction tuning. Models such as Video-LLaVA [22], LLaVA-NeXT
series [18, 19, 44] and Qwen-VL series [2, 3] fine-tune large language models with video-frame inputs,
enabling open-ended video description and Q&A. These MLLMs demonstrate strong performance
on tasks like captioning and dialogue about videos. However, their training data and objectives are
predominantly observational, describing or explaining visible content, rather than predictive. Our
work differs by introducing a predictive objective, next event prediction, to explicitly train the model’s
temporal reasoning abilities. This aligns with the goal of modeling world dynamics, extending beyond
static understanding of frames to reasoning about how scenes evolve over time.

Future Prediction in Computer Vision. Anticipating future events has been studied in computer
vision under various forms. Action anticipation and early action prediction tasks [17, 12, 31, 6]
ask models to predict the next action or action label before it happens. Similarly, future frame
prediction and motion forecasting have been used in self-supervised learning (e.g. predicting future
video frames or representations [27, 35]). These works typically operate at the low-level (action or
frame level) prediction and often yield a limited set of outcomes (e.g. a discrete action class or a
blurry predicted frame). Our work is distinct in that we aim for high-level semantic future event
prediction. This requires integrating percepted visual facts with pretrained commonsense knowledge
(e.g. understanding that if a glass is teetering on a table edge, it might fall and shatter) and expressing
outcomes in natural language.

Detailed Event Event Casualty
Captioning Extraction Analysis

GPT: (input: video GPT: (input: caption GPT: (input: events

A child is actively tjson Suitable for future
h |:> swinging on the monkey prediction? : “Yes”
[E. bars at a vibrant outdoor {Scene 1: “A child ...”}, Split Point: “between
P playground, gripping ... {Scene 2: “Legs are...”}, Scene 3 and Scene 4”

&

4

Answer R1 Future

e o Caption
Rewriting Prediction Splitting
GPT: (input: caption and
GPT: (Future Prediction D Seek: (Caption part 1) Split Point
<think> The video shows ... <\think> <:| <think> The caption shows ... <\think> <:| Caption part 1: “A child is
<answer> In the next, the child will <answer> In the next, the child will actively swinging ...”
successfully ... <\answer> successfully ... <\answer> Caption part 2: “The child
catches...”
Answer Video
Critique Splitting
PT: (Prediction an tion part 2) Qwen-VL: (Video and Split Point;
Critique: The prediction generally
reflect the face ... Split timestep: 00:13.30

Figure 8: Data Construction Pipeline.

B Appendix: Detailed Data Construction Pipeline

B.1 V1-33K Construction

Fact Translation. In this initial stage, visual content is translated into a textual format to serve as
the foundation for further processing. For every video, we use a Vision-Language Model (VLM) to
generate a detailed caption that comprehensively describes the visual facts. This conversion from
visual to textual data ensures that the strong text-based reasoning capabilities of open-source large
language models (LLMs) can be leveraged.
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Analysis. Given the fact that current models exhibits stronger reasoning capabilities when working
with text, we feed the detailed captions into a LLM. The LLM performs two critical tasks:

* Scene Identification: It dissects the caption to extract and delineate distinct scenes.

* Causal Analysis: It evaluates the causal relationships between scenes and identifies an optimal
split point where the context from preceding events is strong enough to predict what comes next.

This step establishes a structured understanding of the video, which is crucial for effective segmenta-
tion.

Segmentation. Using the optimal split point determined during the Analysis stage, we partition
both the original video and its caption into two parts. The first part of the video, which contains the
initial events, serves as a clear input for the video reasoning model, ensuring that the video reasoning
is based on established facts. The second segment is reserved as the ground truth for evaluating the
model’s predictions.

Reasoning & Critique. One promising approach to rapidly enhance video reasoning is through
Long CoT supervised fine-tuning. In our dataset, we leverage the output of a text reasoning model to
facilitate this process. Specifically, the text reasoning model (DeepSeek-R1) processes the first part of
the caption, recording its reasoning process and generating predictions for future events. Recognizing
that textual reasoning can sometimes introduce errors, we subsequently employ an additional LLM
to critically evaluate both the reasoning process and the resulting predictions. This approach draws
inspiration from recent advances in critique fine-tuning (CFT), where models learn to critique noisy
responses, pecifically the reasoning and predictions, rather than simply imitating them through SFT.
By doing so, we ensure that only robust reasoning informs the final training of the MLLM, ultimately
boosting its overall performance.

The data processing pipeline is outlined below. We employ DeepSeek-R1 [14] for the Future
Prediction step and Qwen2.5-VL-72B-Instruct for Video Splitting, while using the O3-mini [1] for
all other steps. The prompts used at each stage are critical for high-quality data processing. We have
made efforts in manually testing a wide range of hand-written prompts and playing with the APIL.

Table 5: Statistics and distribution of data source for Extrapolation and Interpolation in FutureBench.
#Total indicates the total size of each subset.

Data Source Extrapolation Interpolation
1-Hop 2-Hop 3-Hop

#Total 173 193 201 489
YouTube 48.0% 373% 45.3% 51.9%
ActivityNet  23.1% 31.6% 24.9% 23.5%
YouCook2 11.6% 10.4% 10.0% 8.2%
NextQA 87% 10.4% 10.0% 8.2%
Charades 8.6% 103% 9.8% 8.2%

B.2 FutureBench Details

We discuss the details of FutureBench construction in Section 3.2. Note that the videos used in
FutureBench have no overlap with V1-33K to ensure fair evaluation despite the same curation pipeline.
FutureBench also involves videos from diverse sources. The final statistics of FutureBench and
distribution of the data source are shown in Table 5.

C Appendix: Training Strategy

Supervised Fine Tuning (SFT). We fine-tune the MLLM on V1-33K using standard supervised
learning. The model receives the first segment of a video caption and predicts its continuation,
training via cross-entropy loss. This stage instills basic predictive capabilities, allowing the model to
directly imitate ground-truth future event descriptions.
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Critique Fine Tuning (CFT). CFT is a strategy where models learn to critique noisy responses
instead of simply imitate answers [36]. We leverage critique data generated by an external LLM (e.g.,
GPT-4) that identify strengths and errors in model predictions relative to ground-truth continuations.
During fine-tuning, the model learns to refine flawed continuations or evaluate predictions based on
provided critiques, internalizing feedback to enhance logical consistency and predictive accuracy.

Distillation Tuning (Distill). We employ knowledge distillation from DeepSeek-R1, a strong
reasoning model. For each sample, DeepSeek-R1 generates detailed reasoning steps and a predicted
caption. The student model is fine-tuned to reproduce this entire reasoning sequence, adopting
structured inferential patterns to improve both reasoning and prediction accuracy.

Mix Tuning (Mix). We combine SFT, CFT, and Distillation methods equally in each training
epoch. By interleaving direct predictions, critique-informed refinements, and explicit reasoning
demonstrations, the model integrates various supervision signals. This mixed strategy promotes
robust learning, balancing factual accuracy, critical feedback integration, and structured reasoning
capabilities.

D Appendix: Prompt

Event Identification Prompt
This prompt ensures structured extraction of discrete events from raw captions.

(" Event Identification )
Below is the video caption:
{video_caption}
Task:
1. Identify and list the events (scenes) in the video in
sequential order (e.g., Scene 1, Scene 2, etc.).
2. For each scene, provide a description.
Please return your answer in a valid JSON format exactly as
follows (with no extra text):
{
"events": [
{"scene": "Scene 1",
"description": "Brief description of scene 1"},
{"scene": "Scene 2",
"description": "Brief description of scene 2"},
]
}
\ J

Causal Analysis and Splitting Suitability Prompt
This prompt assesses causal dynamics and decides an optimal split for inferential tasks.
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Causal Analysis and Splitting Suitability Prompt

Below are the extracted events from the video:
{json.dumps(event_identification_result, indent=2)}

Original video caption:
{video_caption}

Task:

1. Analyze the causal relationships among these events.

2. Determine whether the video is suitable to be split into
two parts for causal inference (i.e., given the first part,
can we predict what happens in the second part?).

3. If it is suitable, specify the optimal split point (for
example, ’between Scene A and Scene B’).

Please provide your answer in a valid JSON format exactly as
follows (with no extra text):

"suitable": "yes" or "mno",

"optimal_split_point":
"between Scene X and Scene Y",

"reasoning":
"Detailed explanation of the causal relationships
and the split decisiomn."

.

Caption Splitting Prompt
This prompt divides the caption into meaningful segments at the identified split.

( Caption Splitting Prompt

Using the identified events and the optimal split point, split
the original video caption into two parts. The optimal
split point is given in the format ’between Scene X and
Scene Y’. This means that all scenes up to and including
Scene X should be included in the first part
(’caption_partl’), and all scenes from Scene Y onward
should be included in the second part (’caption_part2?’).

The identified events:
{json.dumps (event_identification_result, indent=2)}

and the optimal split point:
{casual_analysis_result["optimal_split_point"]}

Original video caption:
{video_caption}

Return your answer in a valid JSON format exactly as follows
(no extra text):

{
"caption_partl": "Text for first part",
"caption_part2": "Text for second part"

}
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Chain-of-Thought Reasoning & Future Prediction Prompt

This prompt guides the model to articulate its reasoning process and forecast upcoming events.

~

Chain-of-Thought Reasoning & Future Prediction Prompt

~

You have advanced visual perception abilities and can analyze
videos as if you are watching them in real time. You will
be provided with a detailed description of a video
(caption). Interpret this description as if it represents

your actual dynamic visual experience rather than just text.

Based on the scene, analyze and predict future events. Provide
concise, natural, and confident prediction about the
video’s future events. Speak as if you are directly
observing the events, avoiding any reference to reading
text or captions. If details are ambiguous, express natural
uncertainty (e.g., "It appears that ...").

Caption:

{caption_partil}
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Rewrite Reasoning Prompt
This prompt refines reasoning text to consistently reference the video context.

( Rewrite Reasoning Prompt

You will receive a snippet of text that references a
"description" or "caption" of a video. Your task is to
produce a **nearly identical** version of that text with
**minimal ** changes, focusing on the following:

1. **Replace references to "description" or "caption"** with
wording that references **"the video."x**

- For example, "The description says..." could become
"The video shows..."
- "The caption suggests..." could become

"The video suggests..."
- Make sure the replacement sounds natural but does
**not*x* otherwise change the meaning.

2. **Preserve all line breaks, punctuation, and spacing** as
much as possible, and make **no additional edits** outside
of these replacements.

3. You should only output the rewritten content.

Here is the input:
{reasoning_content}

.

Rewrite Prediction Prompt
This prompt standardizes prediction text to explicitly mention the video rather than captions.

( Rewrite Prediction Prompt

You will receive a snippet of text that references a
"description" or "caption" of a video. Your task is to
produce a *x*nearly identical** version of that text with
**minimal ** changes, focusing on the following:

1. **xReplace references to "description" or "caption"** with
wording that references **"the video."x**

- For example, "The description says..." could become
"The video shows..."
- "The caption suggests..." could become

"The video suggests..."
- Make sure the replacement sounds natural but does
**not** otherwise change the meaning.

Here is the input:
{prediction_content}
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Future Prediction Verification Prompt
This prompt critically evaluates the alignment of predictions with the actual video outcome.

@ Future Prediction Verification Prompt

Task:

Review the caption of the second part of a video as the ground
truth and evaluate whether the future prediction (derived
from the first part of the video) aligns with the actual
events.

What actually happened in the second part of the video:
{caption_part2}

Prediction (derived from the first part of the video):
{prediction_content}

Reasoning behind the prediction:

{reasoning_content}

Instructions:

1. Analyze the prediction and the reasoning provided,
considering how well they align with the ground truth.

2. Note that accurately predicting future events is inherently
challenging; allow for minor discrepancies and avoid overly
strict judgments.

3. Think step by step and provide a critique of the prediction
and its underlying reasoning.

4. Conclude your analysis by stating either "Conclusion:
right" if the prediction aligns well, or "Conclusion:
wrong" if it does not.

Output:
Return your analysis in a valid JSON format exactly as shown
below (do not include any extra text):

{
"Critique":
"Your critique of the prediction and its underlying
reasoning",
"Conclusion": "right"/"wrong"
}
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FutureBench 1-Hop Question Construction Prompt
This prompt aims to generate the 1-hop QA pairs of FutureBench.

( FutureBench 1-Hop Question Construction Prompt

You are an expert in video understanding. Your task is to
generate one multiple-choice question to assess the video
understanding ability of a test model. You are given the
meta information about a video that includes:

- Video captions: A complete description of the entire video
for your reference.

- Scene descriptions: Detailed descriptions of key scenes
throughout the video.

- Observed Scenes: Scenes in the given video that the test
model can observe.

- Last Scene: The last scene of the entire video.

Requirements:

1. Question Content:

- Given the video with observed scenes (scene 1 to k), the
question should force the test model to predict future
events (scene k+1 to scene n) and ask what intermediate
events would be supposing scene n is given and scene n is
the potential future end.

- For example, "Question": "Based on the given video, predict
future events and fill in the potential events in the given
future events: 1. [?] 2. [describe scene n]. "Options":
A/B/C/D. [describe scene for slot 1]

- Keep the event slot [?] to be filled.

- Construct the future event gap so that it is hard enough.
For example, wrong answers could present the wrong order of
the predicted future events.

- Avoid using scene id in the question and start the question
from "Based on the given video, ..."

2. Question Format:

- Create one multiple-choice question with four answer
options: A, B, C, and D.

- Ensure only one correct answer and that the remaining three
options are wrong.

- Only output required question-answer pairs shown in the
output structure.

Output structure:

{output_structure}

Please generate an example question based on the following
input data.

Input Data:

- Video captions: {caption}

- Scene descriptions: {event}

- Observed Scenes: {obs}

- Last Scene: {last}

-
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FutureBench 2-Hop Question Construction Prompt
This prompt aims to generate the 2-hop QA pairs of FutureBench.

( FutureBench 2-Hop Question Construction Prompt

You are an expert in video understanding. Your task is to
generate one multiple-choice question to assess the video
understanding ability of a test model. You are given the
meta information about a video that includes:

- Video captions: A complete description of the entire video
for your reference.

- Scene descriptions: Detailed descriptions of key scenes
throughout the video.

- Observed Scenes: Scenes in the given video that the test
model can observe.

- Last Scene: The last scene of the entire video.

Requirements:

1. Question Content:

- Given the video with observed scenes (scene 1 to k), the
question should force the test model to predict future
events (scene k+1 to scene n) and ask what intermediate
events would be supposing scene n is given and scene n is
the potential future end.

- For example, "Question": "Based on the given video, predict
future events and fill in the potential events in the given
future events: 1. [?] 2. [?] 3. [describe scene n].
"Options": A/B/C/D. [describe scene for slot 1], [describe
scene for slot 2]

- Keep the event slot [?] to be filled.

- Construct the future event gap so that it is hard enough.
For example, wrong answers could present the wrong order of
the predicted future events.

- Avoid using scene id in the question and start the question
from "Based on the given video, ..."

2. Question Format:

- Create one multiple-choice question with four answer
options: A, B, C, and D.

- Ensure only one correct answer and that the remaining three
options are wrong.

- Only output required question-answer pairs shown in the
output structure.

Output structure:

{output_structure}

Please generate an example question based on the following
input data.

Input Data:

- Video captions: {caption}

- Scene descriptions: {event}

- Observed Scenes: {obs}

- Last Scene: {last}

.
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FutureBench 3-Hop Question Construction Prompt
This prompt aims to generate the 3-hop QA pairs of FutureBench.

( FutureBench 3-Hop Question Construction Prompt

You are an expert in video understanding. Your task is to
generate one multiple-choice question to assess the video
understanding ability of a test model. You are given the
meta information about a video that includes:

- Video captions: A complete description of the entire video
for your reference.

- Scene descriptions: Detailed descriptions of key scenes
throughout the video.

- Observed Scenes: Scenes in the given video that the test
model can observe.

- Last Scene: The last scene of the entire video.

Requirements:

1. Question Content:

- Given the video with observed scenes (scene 1 to k), the
question should force the test model to predict future
events (scene k+1 to scene n) and ask what intermediate
events would be supposing scene n is given and scene n is
the potential future end.

- For example, "Question": "Based on the given video, predict
future events and fill in the potential events in the given
future events: 1. [?] 2. [?] 3. [?] 4. [describe scemne n].
"Options": A/B/C/D. [describe scene for slot 1], [describe
scene for slot 2] [describe scene for slot 3]

- Keep the event slot [?] to be filled.

- Construct the future event gap so that it is hard enough.
For example, wrong answers could present the wrong order of
the predicted future events.

- Avoid using scene id in the question and start the question
from "Based on the given video, ..."

2. Question Format:

- Create one multiple-choice question with four answer
options: A, B, C, and D.

- Ensure only one correct answer and that the remaining three
options are wrong.

- Only output required question-answer pairs shown in the
output structure.

Output structure:

{output_structure}

Please generate an example question based on the following
input data.

Input Data:

- Video captions: {caption}

- Scene descriptions: {event}

- Observed Scenes: {obs}

- Last Scene: {last}

-
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FutureBench Interpolation Question Construction Prompt

You are an expert in video understanding. Your task is to
generate one multiple-choice question to assess the video
understanding ability of a test model. You are given the
meta information about a video that includes:

- Video captions: A complete description of the entire video
for your reference.

- Scene descriptions: Detailed descriptions of key scenes
throughout the video.

- Observed Scenes: Scenes in the given video that the test
model can observe.

- Last Scene: The last scene of the entire video.

Requirements:

1. Question Content:

- Given the video with observed scenes (scene 1 to k), the
question should force the test model to predict future
events (scene k+1 to scene n) and ask what intermediate
events would be supposing (scene k+i and scene k+j are
given, k+i and k+j are potential future events).

- For example, "Question": "Based on the given video, predict
future events and fill in the potential events in the given
future events: 1. [describe scemne k+1] 2. [?] 3. [describe

scene k+i] 4. [?] 5. [describe scene k+j]. "Options": A)
[describe scene k+2], [describe scene k+j-1] B) [describe
scene k+j-1], [describe scene k+2] C) [describe scemne

k+i+1], [describe scene k+i-1] D) [describe scene k+i-1],
[describe scene k+2]

- Formulate the question so that the test model would not be
able to deduce the correct answer without the observed
scenes.

- Formulate the question so that it is hard enough and the
test model would not be able to deduce the correct answer
with only commonsense knowledge.

- Avoid using scene id in the question and start the question
from "Based on the given video, ..."

2. Question Format:

- Create one multiple-choice question with four answer
options: A, B, C, and D.

- Answer options should be built upon the scenes after the
observed scenes and before the last scene.

- Ensure only one correct answer and that the remaining three
options are wrong.

- Ensure each wrong answer contains related information to the
observed scene but include missing details or omnly part of
them are correct.

- Only output required question-answer pairs shown in the
output structure.

Output structure:
{output_structure}

Please generate an example question based on the following
input data.

Input Data:

- Video captions: {caption}

- Scene descriptions: {event}
- Observed Scenes: {obs}

- Last Scene: {last}
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E Appendix: Implementation Details

We conducted our experiments using two open-source frameworks: LLaMA-Factory[45] for super-
vised video instruction tuning, and EasyRI [46] (based on the Verl framework[29]), optimized for
reinforcement learning with multimodal data.

For supervised video instruction tuning, we trained our Qwen2.5-3B-VL-Instruct and Qwen2.5-7B-
VL-Instruct models using LLaMA-Factory. Both models were fine-tuned for three epochs on 8
NVIDIA A100 GPUs, employing the AdamW optimizer with a cosine learning rate scheduler, an
initial learning rate of 1 x 10~°, and a warm-up ratio of 0.1 to ensure stable training dynamics. To
optimize memory usage and address computational constraints, each GPU processed one training
sample per step, with gradient accumulation every two steps, effectively simulating a larger total
batch size of 16 (2 steps x 8 GPUs).

For the reinforcement learning phase, experiments were executed using EasyR1 to further enhance
model capabilities through multimodal refinement learning with Group Relative Policy Optimization
(GRPO) [14, 28], also utilizing 8 NVIDIA A100 GPUs. We fine-tuned the Qwen2.5-VL-7B-Instruct
model with a maximum prompt length of 4096 tokens and a response length capped at 2048 tokens.
Training utilized global batch sizes of 16 samples per rollout, with micro-batches of four samples
per GPU during parameter updates and eight per GPU for experience collection. We set the entropy
coefficient to 1 x 10~ to encourage exploration and the KL-divergence loss coefficient to 1 x 1072
to maintain stable policy updates. Rollouts were configured to run eight steps without tensor
parallelism or chunked prefill, ensuring efficient training and stable convergence. Evaluation logging
was performed periodically, capturing ten generations per validation. Model checkpoints were
systematically saved every 200 training iterations for comprehensive monitoring.

To accommodate varied visual inputs, in both settings, image resolutions were constrained between a
minimum of 3136 pixels and a maximum of 1,605,632 pixels, ensuring consistency and computational
manageability across diverse multimodal data.

For evaluation, we leveraged the open-source multimodal evaluation framework Imms-eval [43]. The
framework encompasses all the benchmarks except SeedBench-R1 and our proposed FutureBench.
To enhance reproducibility and usability, we integrated both SeedBench-R1 and FutureBench into the
Imms-eval framework. Hyperparameters followed the default settings provided by Imms-eval.

F Appendix: Limitation

Despite demonstrating the effectiveness of Next-Event Prediction (NEP) in advancing temporal
reasoning capabilities in Multimodal Large Language Models (MLLMs), our current work has several
limitations that invite further exploration. First, NEP primarily relies on automatically generated
textual descriptions for future video segments as supervision signals. Although this approach offers
scalability and avoids costly human annotations, the quality of generated captions might not match
human-level precision and may reflect biases inherent in the annotation models used (e.g., GPT-
40 [16]). Future research could explore integrating annotations from diverse sources, such as human
annotators or alternative advanced models like Gemini [33], to enhance annotation quality and reduce
biases. Second, while our proposed V1-33K dataset encompasses diverse scenarios, it may not fully
capture all possible real-world video contexts, particularly highly specialized or infrequent event
sequences. Extending this dataset by including additional domains, incorporating larger datasets, or
employing synthetic video generation techniques could further enhance the diversity and robustness
of the dataset, thereby strengthening models’ temporal reasoning abilities. Third, current state-of-
the-art (SOTA) models often integrate diverse instruction-tuning datasets and tasks and leverage
model merging strategies to optimize performance across benchmarks. Our current work primarily
focus on comparing different tasks individually without combining datasets or using model merging.
Future research aimed at achieving SOTA performance across a wider array of benchmarks could
benefit from exploring combined instruction-tuning data strategies and model merging approaches.
Addressing these limitations will significantly enhance the reliability, generalizability, and depth of
temporal reasoning capabilities in video-based multimodal language models.
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G Appendix: Broader Impacts

The proposed next-event prediction task has the potential to have a significant positive societal
impact by improving multimodal models’ temporal reasoning capabilities, increasing their utility
in applications such as video-based surveillance, assistive technology, and educational content
generation. Improved predictive understanding of dynamic events could also help in safety-critical
situations like traffic management and emergency response systems. However, there are some
drawbacks, such as the risk of reinforcing biases embedded in training datasets, which is exacerbated
by the reliance on automatically generated captions without human oversight. Careful consideration,
transparent documentation, and strict ethical oversight will be essential to mitigate these risks and
ensure responsible deployment.

H Licenses

We use standard licenses from the community. We include the following licenses for the codes,
datasets and models we used in this paper.

Datasets & Benchmarks:

¢ VideoMME [11]: CC BY-NC 4.0

e MVBench [20]: MIT

* LongVideoBench [38]: CC-BY-NC-SA 4.0

* TemporalBench [5]: MIT

* TempCompass [24]: CC BY-NC 4.0

* SeedBench-R1 [7]: Apache License 2.0

* LLaVA-Video-178K [42]: Apache License 2.0

Codes:

* verl [29]: Apache License 2.0
* EasyR1 [46]: Apache License 2.0
e LLaMA-Factory [45]: Apache License 2.0

Models:

* Qwen2.5-VL-7B-Instruct [3]: Apache License 2.0
* Qwen2.5-VL-3B-Instruct [3]: Apache License 2.0
* OpenAl API [16]: OpenAl API Terms of Use

26


https://github.com/MME-Benchmarks/Video-MME/blob/main/README.md
https://github.com/OpenGVLab/Ask-Anything/blob/main/LICENSE
https://github.com/longvideobench/LongVideoBench/blob/main/README.md
https://github.com/mu-cai/TemporalBench/blob/main/README.md
https://github.com/llyx97/TempCompass/blob/main/LICENSE
https://github.com/TencentARC/SEED-Bench-R1/blob/main/LICENSE
https://github.com/LLaVA-VL/LLaVA-NeXT/blob/main/LICENSE
https://github.com/volcengine/verl/blob/main/LICENSE
https://github.com/hiyouga/EasyR1/blob/main/LICENSE
https://github.com/hiyouga/LLaMA-Factory/blob/main/LICENSE
https://github.com/QwenLM/Qwen2.5-VL/blob/main/LICENSE
https://github.com/QwenLM/Qwen2.5-VL/blob/main/LICENSE
https://openai.com/policies/row-terms-of-use
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