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Although plant disease recognition is highly important in agricultural production, traditional methods face
challenges due to the high costs associated with data collection and the scarcity of samples. Few-shot plant disease
identification tasks, which are based on transfer learning, can learn feature representations from a small amount
of data; however, most of these methods require pretraining within the relevant domain. Recently, foundation
models have demonstrated excellent performance in zero-shot and few-shot learning scenarios. In this study, we
explore the potential of foundation models in plant disease recognition by proposing an efficient few-shot plant
disease recognition model (PlantCaFo) based on foundation models. This model operates on an end-to-end
network structure, integrating prior knowledge from multiple pretraining models. Specifically, we design a
lightweight dilated contextual adapter (DCon-Adapter) to learn new knowledge from training data and use a
weight decomposition matrix (WDM) to update the text weights. We test the proposed model on a public dataset,
PlantVillage, and show that the model achieves an accuracy of 93.53 % in a “38-way 16-shot” setting. In addition,
we conduct experiments on images collected from natural environments (Cassava dataset), achieving an accuracy
improvement of 6.80 % over the baseline. To validate the model's generalization performance, we prepare an out-
of-distribution dataset with 21 categories, and our model notably increases the accuracy of this dataset. Extensive
experiments demonstrate that our model exhibits superior performance over other models in few-shot plant
disease identification.

1. Introduction

The automatic recognition of plant diseases is crucial for ensuring
food security and improving yield [1-3]. Considerable progress has been
achieved in this area because of advances in large neural architectural
design and large-scale labeled data [4-7]. However, this reliance pre-
sents significant challenges in agriculture. One challenge is that the
collection and annotation of agricultural data are often expensive and
time-intensive. Furthermore, the rarity of certain plant diseases makes
gathering a large number of examples impractical. Therefore, it is
necessary to develop fast and accurate plant disease recognition methods
to alleviate the bottlenecks caused by this dependency.

To overcome this bottleneck, an effective solution is to train models
using only a small number of labeled samples, a technique called few-

shot learning [8-10]. In few-shot learning, datasets are designed to
include only a small number of labeled examples for each class, often in
the form of a support set and a query set. The support set contains a few
labeled examples that the model uses to learn, whereas the query set is
used to evaluate the model's ability to generalize. The key evaluation
framework in few-shot learning is the N-way K-shot setup. In this
framework, N-way refers to the number of distinct classes (e.g., N
different plant diseases), and K-shot indicates the number of labeled
samples available for each class (e.g., K labeled samples for each disease).
For example, in a 5-way 1-shot setting, the model is tasked with classi-
fying among five classes, with only one labeled example per class avail-
able for training. Significant progress has been made in this area,
primarily through three approaches: data augmentation, meta-learning
and transfer learning. Data augmentation enriches the training data
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Fig. 1. The architecture of PlantCaFo. The dark blue dotted line indicates the storage of few-shot image features in advance in the buffer model.

through transformations or syntheses of existing data [11,12].
Meta-learning promotes adaptation to new tasks via training on a diverse
set of tasks [13-15]. Transfer learning uses knowledge learned from a
related task to assist in solving the current task [16,17]. This method has
received considerable attention because it leverages information from a
source domain to enhance the model's performance and generalization in
the target domain.

In recent years, few-shot learning based on transfer learning for plant
disease classification has typically employed a two-stage strategy: first,
learning general feature representations on a large number of relevant
source sets and then fine-tuning on target sets to generate specific feature
representations for subsequent prediction tasks. For example, Argiiesoa
et al. [18] utilized the Inception V3 [19] network as a feature extractor to
train on a plant disease dataset and then employed the Siamese network
[20] with triplet loss to learn new plant diseases from a small dataset,
achieving an average identification accuracy of 90 % for “6-way
80-shot”. Hepsag et al. [21] proposed refining a model initially trained on
ImageNet [22] with PlantCLEF2022 [23], which includes nearly 4
million images across 80,000 categories, to extract embeddings. They
then trained a support vector machine, yielding an accuracy of 88.4 % in
a “38-way 10-shot” scenario. Li et al. [24] proposed a semisupervised
few-shot classification method using a small number of labeled samples
and a large number of unlabeled samples to reduce the amount of
annotation work. Tassis et al. [25] cropped symptom images from the
original plant disease data to assist in training. Additionally, some re-
searchers have attempted to use transformer models for plant disease
recognition [26,27]. However, these methods require a large amount of
data and computational resources to train the feature extractor, and they
often struggle with challenges such as class imbalance and domain shift,
which hinder their generalization performance.

Inspired by the remarkable performance of foundation models such as
CLIP [28] and DINO [29] in zero-shot and few-shot learning, we adopt
existing large models to generate embeddings for samples in this work,
thus alleviating the need for extensive data and limiting computational
costs. However, existing foundation models have clear limitations in the
agricultural field, such as mismatched datasets and poor generalization in
agricultural scenarios, necessitating adjustments to address these issues.

Cao et al. [30] proposed the ITLMLP method for cucumber disease
identification, which is based on image-text-label information and in-
tegrates CLIP, self-supervised contrastive learning (SimCLR [31]), and
label information. This method achieved a classification accuracy of
94.84 % on a small multimodal cucumber disease dataset. CLIP, which is
trained on a large number of image—text pairs via contrastive learning, is
a multimodal model with many parameters. Consequently, full
fine-tuning usually leads to overfitting on certain datasets and slows
down the training process. To address these challenges, several
adapter-based methods have been proposed [32], which quickly adapt
pretraining models to downstream tasks by introducing a few learnable
parameters.

In addition to the aforementioned issues, data scarcity significantly
impacts the performance of few-shot learning. Recent studies have
attempted to use generative adversarial networks (GANs) [33], archi-
tectural variants, and image-to-image translation (I2I) [34] techniques
for data augmentation. Bin et al. [35] introduced a GAN to generate
images of grape leaf diseases. Quan et al. [36] proposed Leaf GAN, an
innovative image-to-image translation system with a self-attention
mechanism. However, training GANs or 121 models efficiently remains
challenging. Zhang et al. [37] presented CaFo, a multibasic cascade
model, which extends images by using DALL-E [38]. However, owing to
the lack of agricultural domain-specific knowledge, DALL-E and other
general generative models cannot produce complex details of plant dis-
eases. Consequently, their generated images significantly differ from the
actual image and therefore cannot be used directly as the desired data.

In this work, we propose an efficient few-shot plant disease recogni-
tion method based on foundation models, called PlantCaFo. This method
enhances the altered CaFo [37] (a cascade model) with a dilated
contextual adapter (DCon-Adapter) and a weight decomposition matrix
(WDM) to efficiently improve the model's performance in plant disease
recognition tasks via a small amount of data, as shown in Fig. 1. The
DCon-Adapter learns new features from few-shot images to enrich image
embeddings. Moreover, the WDM updates the text weights with a small
number of parameters, enhancing the interaction between the text and
images. These two techniques have already achieved promising results in
large models [39-41], and well-designed structures can enhance the
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Fig. 2. Some samples from different datasets. (A) Plant Village, (B) Cassava, and (C) PDL.

model's capabilities in agricultural applications. Moreover, we explore
the effects of CutMix [42] and Mixup [43] on the model. Experiments
show that these two data enhancements can bridge the gap that occurs in
PlantCaFo with 1 or 2 shots, further improving the model performance.

To validate the performance of our model, we conducted extensive
experiments on the public Plant Village [44] and Cassava [45] datasets.
The results demonstrate that our model outperforms the state-of-the-art
models. Additionally, we collected samples in a natural scenario from
the public PlantDoc dataset [46] to compose an out-of-distribution
dataset (PDL) to assess the model's generalization ability. Our model
notably enhances the accuracy on this dataset. The contributions of this
work are threefold.

(1) We propose a few-shot plant disease recognition model based on
foundation models that do not require pretraining in the domain.

(2) The large-scale model is fine-tuned on few-shot plant disease data
via two parameter-efficient methods, a DCon-Adapter and a WDM.
Extensive experiments are conducted on multiple datasets with
different settings to verify the superiority of these methods.

(3) An out-of-distribution dataset (PDL) is established to validate the
performance and generalization ability of the proposed methods,
and PlantCaFo achieves state-of-the-art performance.

2. Materials and methods
2.1. Image datasets

We evaluate our approach on two challenging datasets: PlantVillage
[44] and Cassava [45]. Additionally, we introduce a new
out-of-distribution dataset (PDL) for generalization experiments. The
Plant Village dataset contains 38 conditions (classes) from 14 different
plants, with a total of 54,305 images collected under laboratory condi-
tions with simple backgrounds. These plant leaves exhibit 26 disease
characteristics caused by fungi, bacteria, or viruses. Some samples are
shown in Fig. 2(A).

The Cassava dataset, which is from the 2019 Plant Pathology Chal-
lenge, contains 5656 images captured by smartphones in field scenarios.
These images, which were collected by the Makerere University Al Lab
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Fig. 3. The process of text generation.

Table 1
Examples of text descriptions for plant diseases.

Disease name Text description

Apple black rot (i) The symptoms of apple black rot are small, black spots
that appear on the leaves.

(i) The symptoms of apple black rot on leaves include dark
brown or black lesions on the leaves, necrosis of the tissue
around the lesions, and eventually death of the leaves.

(iii) Initial symptoms of black rot on apple leaves include

small, dark spots that expand and eventually coalesce to

form large, velvety brown lesions.

Leaves affected by powdery mildew display white,

powdery spots on their upper surfaces.

(i) The symptoms of squash powdery mildew on leaves
includes the appearance of a white or gray powdery
substance on the surface of the leaves.

(iii) On leaves, squash powdery mildew looks like a gray or
white powdery substance.

=

Squash powdery 6
mildew

and the National Crops Resources Research Institute, are included in the
training set and represent real-life scenarios. The dataset consists of five
categories of cassava (four diseased, one healthy): cassava brown streak
disease (CBSD), cassava mosaic disease (CMD), cassava bacterial blight
(CBB), cassava green mite (CGM), and healthy cassava. Typical leaf
samples are shown in Fig. 2(B). These datasets were split into training,
testing, and validation sets at a ratio of 7:2:1 via stratified random
sampling. Augmentation was implemented through random horizontal
flipping, resizing, cropping, and normalization. The images were resized
to 224 x 224 pixels to meet the requirements of the deep learning
models.

To evaluate how well the model generalizes to different data distri-
butions, we constructed a plant disease dataset (PDL) from the publicly
available PlantDoc dataset [46], which captures natural scenes. This
dataset has a different distribution from that of the PlantVillage dataset
but shares 21 common classes, with approximately 40 images per class.
Some examples from this dataset are shown in Fig. 2(C).

2.2. Disease description generation

For disease description generation, we propose two methods. First, a
provided template can be used, such as “a leaf photo of [CLASS]”, where
[CLASS] is replaced by the ground-truth text label for each class (e.g.,
“apple black spot disease” or “cucumber powdery mildew disease™). The
template is used only to explore the impact of text on models. Second,
disease prompts can be generated via the GPT-3 language model [47],
following the process outlined in Fig. 3. To diversify the generation of
disease descriptions, we design six questions with different characteris-
tics, following the approach of CuPL [48]. These questions are suitable
for all 38 different categories, with only the class name changing for each

category. We then submit these questions to GPT-3 to generate 60 re-
sponses for each category. The generated texts are then filtered to retain
texts related to images of the same category. We calculate the similarity
between images and texts via the CLIPScore [49] to evaluate their degree
of correlation. Finally, we select the top 10 texts with the highest CLIP-
Score for per category as the end disease description. This process not
only ensures the diversity and relevance of the disease description but
also provides a reliable evaluation criterion to ensure a good semantic
match between the selected texts and images. Disease descriptions for
some categories are shown in Table 1. Our experiments use these de-
scriptions as prompts.

2.3. A revisit of CaFo

Extensive research has shown that large-scale pretraining can signif-
icantly enhance a network's ability to represent information, especially in
regard to few-shot learning tasks. Zhang et al. [37] proposed CaFo, a
Cascade of Foundation model, to explore whether multiple
self-supervised models can effectively integrate prior knowledge to
improve performance in few-shot recognition tasks. This model in-
corporates diverse prior knowledge from four pretraining paradigms,
specifically, = CLIP's language-contrastive =~ knowledge, DINO's
vision-contrastive knowledge, DALL-E's vision-generative knowledge,
and GPT-3's language-generative knowledge. Among these, CLIP is a
multimodal model trained on a large number of image-text pairs via
contrastive learning. DINO is a self-supervised visual pretraining model
that enhances the performance of visual tasks via contrastive learning to
map different images of the same category to a shared space. DALL-E is
trained on large-scale image-text pairs, which can generate images cor-
responding to previously unseen text descriptions. Furthermore, GPT-3
can produce coherent text based on a few manually designed prompts
because of its massive text corpus training experience. By blending the
strengths of these models, CaFo has demonstrated excellent performance
on multiple image classification datasets compared with that of other
models.

Specifically, CaFo works in a ‘prompt, generate, then cache’ pipeline.
(1) Initially, manually designed prompts are input to GPT-3 to generate
class-specific texts Ty with domain-specific semantics. (2) Next, these
text prompts are fed into zero-shot DALL-E to automatically synthesize
images. (3) CLIP selects D reliable images for each category from these
synthetic images as new extended training samples. In the “N-way K-
shot” setting, there are N categories, and each category contains K sam-
ples. We have a limited number of training images Iyk, with corre-
sponding labels Ly k. Additionally, there are synthetic training images
Iy p, with labels Ly p for each class. Therefore, for each category, there are

a total of K’ training images Iy as follows:

Iyxy =Ivk +Ivp (€9)
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Fig. 4. Some images of plant diseases. (A) Original images and (B) generated images.

K =K+D (2)

The cache model comprises visual features and their labels from the

training set. For each class, the visual features fp cache,fc cache € RNK'XC of
the K training images are extracted via DINO and CLIP, which serve as

keys in the cache model. The corresponding labels Iy, € RVK'*N are stored
in one-hot encoding as shared values. For a test image, the process is as
follows: First, CLIP (using ResNet50 as the image encoder) and DINO
(with ResNet50 as the backbone network) extract its visual features f; €
R1C (i€ (DINO, CLIP,;)). The similarity with the cache values is subse-
quently calculated to determine the predicted score p;. These scores are
then adaptively blended with the zero-shot result p,er_snoe 0f CLIP to
constitute the predictions of the cache model. Wr,, represents the
prompt embeddings extracted by the text encoder of CLIP, ¢(x)=
exp (—a- (1 —x)) is a nonlinear modulator used to control the smoothness
of the similarity matrix, and w; serves as the allocated weight. The
equation is as follows:

Dzero—shot =feLip me 3
pi=g( (©)]
Wi = Pi * Pzero—shot (5)

The final prediction P is joined by the cache model and CLIP:
P =prero—shor + AZ pi - softmax(w;) ®)

Here, i € (DINO, CLIP,;), and 1 is a hyperparameter. Importantly,
during training, only the cache module is learnable, whereas the pa-
rameters of other modules (CLIP, DINO, etc.) are frozen. This approach of
blending various pretraining knowledge sources has proven highly
effective. By leveraging the strengths of multiple foundation models,
CaFo demonstrates outstanding performance across a wide range of few-
shot downstream classification tasks.

2.4. Details of PlantCaFo

General generative models such as DALL-E [38,50] often struggle to
generate reliable images of plant diseases. Fig. 4 shows an example where
we attempt to fine-tune SVDiff [51] with a small number of samples to

generate plant disease images. Compared to real images, the disease le-
sions in the generated images are misaligned, and the coloration does not
accurately reflect the typical appearance of the disease, resulting in un-
natural or unrealistic depictions. The results reveal that the generated
images exhibit suboptimal quality and require a substantial number of
samples to produce satisfactory results. Therefore, this work adopts a
modified version of CaFo as the baseline, referred to as CaFo-Base, with
the image generation component removed. Additionally, Udandarao
et al. [52] observed that CLIP's contrastive training maximizes the cosine
similarity between paired image-text samples across modalities but ne-
glects intramodality similarity. In light of this issue, our experiment up-
dates the image encoder of CLIP in the cache model with the visual
pretraining model DINO2 [53]. To further enhance the model's perfor-
mance, we introduce two new modules: a DCon-Adapter module and a
WDM module for optimization. The resulting enhanced model is called
PlantCaFo, as illustrated in Fig. 1.

2.4.1. Dilated contextual adapter

CLIP is a foundation model capable of extracting general embeddings.
However, its applicability is limited in agricultural applications, espe-
cially in plant disease prediction [30]. To address this limitation, we
introduce a lightweight dilated contextual adapter (DCon-Adapter).

Inspired by the superiority of adapters [32,54,55], the DCon-Adapter
is designed to fine-tune parameters while preventing potential overfitting
in few-shot learning scenarios, which is strategically placed after the last
convolutional block of the CLIP image encoder (which uses ResNet-50
[56] as its backbone). It consists of four layers: the first layer is a
dilated convolution layer, which captures global features by expanding
the receptive field, which is particularly useful for handling complex
backgrounds in plant disease recognition tasks; the second layer is a
batch normalization (BN) layer, which standardizes feature distributions
to accelerate training and improve stability; the third layer uses the ReLU
activation function, which introduces nonlinearity to enhance learning
capacity and offers computational efficiency due to its simple derivative,
accelerating the backpropagation process; and the fourth layer is a
standard convolution layer, which is used to refine local features, further
improving the model's classification ability in few-shot settings. Through
this four-layer structure, the DCon-Adapter effectively balances the
extraction of global and local features, improving the model's perfor-
mance in few-shot learning, especially in cases with scarce data and
complex backgrounds, leading to significant improvements in plant dis-
ease recognition accuracy. Moreover, we use residual connections to
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Fig. 5. Structure of the modules. (A) Design of the DCon-Adapter and (B) update of the text weight via the WDM.

blend new information learned by DCon-Adapter with pretraining prior
knowledge. This approach ensures adaptation to new tasks without
losing prior knowledge.

As illustrated in Fig. 5(A), the process works as follows: given an input
image I, the spatial visual features f, € R?*W*C are extracted by the CLIP
image encoder's last convolutional block. The extracted features are
processed by the DCon-Adapter, which then produces new global and
local visual features, denoted as f, € R™*C. To guarantee that prior
knowledge is not neglected, these new features are combined with the
original features fc;;p € R1*C extracted by the CLIP image encoder via a
residual connection. In summary, the process of feature extraction by
DCon-Adapter can be expressed as follows:

f» = CLIPvis,layeM (I) (7)

fe =DCon_adapter(f,) (8)

The new learned information is incorporated into the original
features:

Jona =avg (fcuP + attention (fg)) )

Then, Equation (3) is updated:

Pfew—shot :fend W;;H (1 0)

After the fused image features f,,4 are acquired, the similarity matrix
Dfew—shor Detween the image and text is calculated via the updated Equa-
tion (10). Equation (6) is subsequently applied to weight the final pre-
dicted scores derived from pre,_s and the cache model. Finally, the
argmax function is employed to determine the predicted image category.
When the image encoder employed by CLIP is a Vision Transformer (ViT)
[57], the last transformer layer of ViT can be added to the DCon-Adapter.

In summary, the DCon-Adapter effectively enhances feature learning
in the image encoder of the CLIP model by incorporating dilated
convolution, batch normalization, nonlinear activation, and regular
convolution layers. The residual connection combines new and prior
knowledge, improving the model's robustness and adaptability. These
approaches significantly increase the model's performance in few-shot
settings.

2.4.2. The weight decomposition matrix

In deep neural networks, image classification is typically achieved by
multiplying the image features with the classifier weights, resulting in a
score matrix. This matrix is then transformed into a probability matrix via
the SoftMax function [58], with the class label being determined by the
index corresponding to the maximum value in the matrix. In CLIP, a
similarity matrix is computed between image features and text features
for each class. The class label is determined by the text with the highest
similarity to the image. A comparison reveals that the embeddings
extracted by the text encoder function similarly to those extracted by the
classifier in image classification. Therefore, the prompt embeddings can
be understood as the weights of the classifier. As in image classification,
the weights of the classifier can be adjusted, allowing for the prompt
embeddings to be adjusted as well. Importantly, excessive parameters
can lead to overfitting in few-shot tasks. To address this issue, a similar
decomposition approach inspired by Hu et al. [59,60] is adopted to
decompose a custom trainable matrix (M) into two low-rank matrices (A
and B):

M=A-B an
The text weights are updated via M:
W' =Wrew + M a2

We denote the updated text weights as W, as depicted in Fig. 5(B).
Therefore, the similarity matrix between images and text in CLIP after
fine-tuning is calculated as follows:

PeLip—final = fena * 4 13)

The final classification result P is updated as follows:
P =pcrLip—finar + /12 pi - softmax(w;) 14)

This procedure allows for efficient adjustment of text weights to
better align with visual information from images. Ablation studies have
demonstrated that the WDM significantly enhances the model's perfor-
mance in few-shot plant disease recognition.
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2.5. Data augmentation: Mixup and CutMix

While CaFo uses DALL-E to produce synthetic images, the common
generative model DALL-E often lacks the agricultural domain-specific
knowledge needed to produce complex details of plant diseases. To
address this limitation, we employ the Mixup [24] and CutMix [25] data
augmentation techniques to increase model performance. Some samples
are shown in Fig. 6.

Mixup is a data augmentation technique based on linear interpola-
tion. It generates new samples by linearly interpolating two different
training examples in a batch, along with their labels:

=+ (1-1)x (15)

y=wi+(1-1)y (16)

where (x;,y;) and (xj,y;) are two randomly selected samples and their
labels in the same batch, while 7 € (0, 1) is a number randomly sampled
from the beta distribution and is used to control the interpolation
weights; the default value is 0.5 in the experiment. With this method,
Mixup introduces noise and disturbances to increase the robustness of the
model.

CutMix involves cropping out sections of an image and randomly
filling them with regions from other images in the training set. Labels are
allocated proportionally. Mixup uses information from the entire image
to merge two images, whereas CutMix mixes images by cropping and
pasting parts of the image. Its implementation formula is similar to that of
Mixup but uses a parameter to control the cropping size. CutMix requires
the model to recognize objects from a local view and adds information
from other samples into the cropped region, which can enhance the
localization ability of the model and improve its classification
performance.

2.6. Evaluation metrics

We use the average accuracy as the primary metric to evaluate the
performance of few-shot classification, as this metric intuitively reflects
the overall classification capability. The accuracy represents the pro-

portion of samples correctly classified by the model and is calculated as
follows:

>Ny
Accuracy =< a7)
>Ny

i

where N;; represents the number of correctly predicted images in class i
and N;; represents the total number of images in class i (true label)
classified as class j (predicted label). Additionally, i,j € (1,n), where n
represents the number of classes.

In addition to average accuracy, we plot a confusion matrix [61] to
analyze the classification results in detail. The confusion matrix is an n x
n matrix. Each row represents the actual class, and each column repre-
sents the predicted class. This matrix helps us visualize how well the
model classifies different classes, including common misclassifications.

Furthermore, we conducted a visual analysis of the attention maps
generated by the DCon-Adapter. Attention maps help us understand the
key areas on which the model focuses. We used these maps to visualize
the attention distribution of the DCon-Adapter on different samples,
providing a more intuitive representation of the model's focus on images.

3. Results and discussion
3.1. Implementation details

In CLIP, the image encoder is ResNet-50, and the text encoder is
Transformer. DINO and DINO2 use ResNet-50 and distilled ViT-S/14 as
backbone networks, respectively. All the networks are pretrained.
Following CaFo, we train our PlantCaFo with 1, 2, 4, 8, and 16 samples,
which are randomly selected and consistent with the random seeds in the
comparison experiments. During training, only the cache model, DCon-
Adapter, and WDM are set to be learnable.

We train PlantCaFo and PlantCaFo*(with Mixup and CutMix data
augmentations) using a batch size of 256 for 40 epochs and adopt the
AdamW optimizer [62] with an initial learning rate of 0.0001. In
PlantCaFo*, for augmented images, since each sample has two labels, we
calculate the cross-entropy loss [63] on each label separately and weight
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Fig. 7. Results of the experiments. (A) Performance (%) comparison on PlantVillage (38 conditions) and (B) performance (%) comparison on Cassava (5 conditions).

Table 2

Accuracy on PlantVillage (%). Bold indicates the best performance, and ’ in-

dicates the second-best performance.

Shots 1 2 4 8 16
Tip-Adapter-F 45.11 56.68 69.53 81.89 85.58
APE-T 52.37 64.32 73.26 80.95 86.21
CaFo-Base 62.74 73.32 78.05 87.58 92.58
PlantCaFo 62.53 72.58 82.63 89.21 93.53
PlantCaFo* 62.95 73.42 85.11 91.58 94.23

Table 3

Accuracy on cassava (%).
Shots 1 2 4 8 16
Tip-Adapter-F 40.06 48.00 58.40 60.40 68.00
APE-T 40.40 44.40 51.60 56.40 66.40
CaFo-Base 40.60 45.60 52.80 53.20 65.20
PlantCaFo 46.20 46.70 52.80 64.40 72.00
PlantCaFo* 47.20 47.60 57.60 68.80 72.80

the two losses as the final loss. Owing to the extremely unbalanced
number of categories in PlantVillage, we apply the testing method by
referring to other similar experiments [64]. The testing set is fixed to 50
randomly selected images from each class, and the process is repeated
several times. All the hyperparameters in PlantCaFo are tuned via the
official validation sets.

All the experiments use PyTorch [65] and are conducted in an Ubuntu
20.04 environment with an Intel(R) Core (TM) i5-10400 F CPU @ 2.90
GHz and an NVIDIA Tesla P40 GPU (24 GB).

3.2. Performance comparison

3.2.1. Experiments on the PlantVillage and cassava datasets

For the Plant Village (PV) and Cassava datasets, we compare Plant-
CaFo and PlantCaFo* (with Mixup and CutMix data augmentations) with
other few-shot learning methods based on CLIP, including CaFo-Base,
APE-T [66], and Tip-Adapter-F [55]. The main results are shown in
Fig. 7 and Tables 2 and 3.

For the Plant Village dataset with a plain background (Table 2), Tip-
Adapter-F performs best with 2 shots and 4 shots, as it has fewer pa-
rameters and shows strong generalization with fewer samples. In other
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Fig. 8. Confusion matrix diagram of PlantCaFo for PlantVillage. (The confusion
matrix of PlantCaFo* is similar, so it is placed in the supplementary materials.)

shots, PlantCaFo and PlantCaFo* outperform Tip-Adapter-F and APE-T,
demonstrating their superior few-shot learning ability on plant disease
datasets. Compared with CaFo-Base, PlantCaFo achieves competitive
results with 1 or 2 samples. Notably, with more than 2 shots, PlantCaFo
significantly outperforms CaFo-Base by up to 4.60 %, and PlantCaFo*
shows even greater improvement. For the complex case of Cassava
(Table 3), PlantCaFo and PlantCaFo* consistently outperform CaFo-Base.
The confusion matrices of PlantCaFo trained with 16 samples on the test
set are shown in Fig. 8. The darkest colors along the diagonal indicate
high accuracy, with most predictions being correct and few mis-
classifications. This strong performance demonstrates PlantCaFo's ability
to effectively learn and classify with limited data. The improved per-
formance of PlantCaFo can be attributed to the use of the DCon-Adapter,
which helps capture more contextual information with fewer parameters,
and the WDM, which optimizes the interaction between textual and vi-
sual features. The incorporation of Mixup and CutMix augmentations
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Table 4

Efficiency analysis.
Method PlantVillage Cassava

Time Accuracy (%) Time Accuracy (%)

Tip-Adapter-F 2 min33 s 85.58 55s 68.00
APE-T 2 min 34 s 86.21 1min4s 66.40
CaFo-Base 6 min 10 s 92.58 1min35s 65.20
PlantCaFo 13 min 47 s 93.32 1 min 57 s 70.00
PlantCaFo* 19min 2s 94.11 3min 20 s 69.60

Table 5

Splits of PDL.
Split disease name

splitl Tomato healthy, Tomato bacterial spot, Tomato early blight, Tomato late
blight, Tomato leaf mold, Tomato mosaic virus, Tomato septoria leaf spot,
Tomato yellow leaf curl virus

split2  Apple cedar rust, Apple scab, Corn common rust, Corn gray leaf spot, Corn
northern leaf blight, Grape black rot, Grape healthy, Pepper bacterial spot,
Pepper healthy, Potato early blight, Potato late blight, Raspberry healthy,
Squash Powdery mildew

Table 6

Accuracy of the generalization experiment (%).
Method PDL Splitl PDL Split2

8-way 13-way

Shots 4 8 16 4 8 16
CaFo-Base 68.75 74.25 84.00 60.05 64.77 68.75
PlantCaFo 72.50 81.50 91.50 58.00 61.08 71.08
PlantCaFo* 77.00 85.00 96.50 58.31 60.77 67.38

further boosts the model's performance by enhancing its ability to
generalize across different plant disease types, which likely contributes to
the increased performance in the PlantCaFo* variant.

3.2.2. Efficiency analysis

Following CaFo, we evaluate the computational efficiency of each
model by comparing the running time. We measure the time taken to
train our model and existing methods using 16 samples on an NVIDIA
Tesla P40. The results are shown in Table 4.

On the PlantVillage dataset, the runtime of PlantCaFo is slightly
longer than twice that of CaFo-Base. This increase is due primarily to the
large size of the PlantVillage dataset, which causes our model to spend
more time extracting feature representations from the validation set.
However, on the smaller Cassava dataset, PlantCaFo's runtime only
increased slightly.

In summary, while our method shows a moderate increase in runtime
due to the addition of learning parameters and data augmentation, the
overall performance is significantly improved. Compared with the other
models, PlantCaFo achieves up to 7.74 % higher accuracy, justifying the
slight increase in computational cost.

Table 7
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3.2.3. Generalization ability

To evaluate the generalization ability of our model, we conduct ex-
periments using an out-of-distribution dataset (PDL). We divide PDL into
splitl and split2, as shown in Table 5. Split1 consists of multiple diseases
from a single plant species, whereas split2 includes multiple diseases
from various plant species. The models are trained on PlantVillage
(source domain) with “8-way 4-shot”, “8-way 8-shot”, “8-way 16-shot”,
“13-way 4-shot”, “13-way 8-shot” and “13-way 16-shot” settings and
then tested on splitl and split2 of PDL. The results are presented in
Table 6.

In the experiments, PlantCaFo and PlantCaFo* demonstrate strong
performance on splitl, which consists of various tomato diseases, indi-
cating effective adaptation to plant diseases of the same type. However,
on split2, which includes a broader range of plants, such as apple, corn,
and grape diseases, our model underperforms CaFo-Base on the 4-shot
and 8-shot settings. Interestingly, applying CutMix and Mixup augmen-
tations resulted in even lower performance than without them. This
performance gap can be attributed to the domain shift and the more
complex backgrounds present in split2 than in the simpler PlantVillage
dataset (Fig. 2A) used for training. While splitl contains diseases with
relatively more consistent features, split2 introduces additional vari-
ability that poses a challenge for models trained on simpler datasets. This
difference highlights the need for further adaptation to real-world agri-
cultural scenarios, where disease symptoms may be more diverse and
varied. The results suggest that although our model is effective in more
controlled settings, it requires additional improvements to generalize
well across a wider range of crops and environmental conditions.

3.3. Ablation studies

3.3.1. Analysis of each module

To assess the contributions of each component in our method, we
conduct extensive ablation experiments on the PlantVillage dataset. The
results are summarized in Table 7. A closer look at the first and second
rows of Table 7 shows that DINO2 is more reliable than CLIP in
computing image similarity. However, DINO2 has a smaller impact on
the overall model performance improvement. Moreover, the results in
the third and fourth rows indicate that the DCon-Adapter plays a more
significant role than the WDM does. Namely, it supplements new
knowledge effectively. The performance improvement becomes more
pronounced as the number of samples increases.

With respect to the component combination, combining the DCon-
Adapter and the WDM further improves the performance of few-shot
learning; however, this combination may be limited when the number
of samples is small (e.g., 1 or 2 samples) because of the learning ability of
the trainable parameters. Finally, this issue has been effectively
addressed by introducing data augmentation techniques. These results
demonstrate that our method achieves significant performance in few-
shot learning tasks by synergistically combining these four compo-
nents: DINO2, DCon-Adapter, WDM, and data augmentation.

3.3.2. Impact of prompt design
To explore the effect of text prompts on model performance, we
conduct experiments using a simple template: “a leaf photo of [CLASS]".

Accuracy analysis of each module on PlantVillage (%). DINO2 stands for DINO2 inside the cache model. DCon-Adapter means a dilated contextual adapter module.
WDM is a weight decomposition matrix module. AG consists of Mixup and CutMix data augmentations. “-" indicates the absence of the component, whereas "+" indicates

its presence.

DINO2 DCon-Adapter WDM AG 1-shot 2-shot 4-shot 8-shot 16-shot
- - - - 62.74 73.32 78.05 87.58 92.58
+ - - - 62.63 73.11 80.00 87.79 92.26
+ + - - 60.21 71.89 81.95 88.95 93.37
+ - + - 62.68 73.11 80.05 88.89 92.37
+ + + - 62.53 72.58 82.63 89.21 93.53
+ + + + 62.95 73.42 85.11 91.58 93.89
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Table 8

Accuracy in PlantVillage using simple prompts (%).
Shots 1 2 4 8 16
CaFo-Base 53.26 66.53 66.53 82.84 89.42
PlantCaFo 59.32 69.68 81.86 85.74 90.79
PlantCaFo* 59.42 72.26 82.63 89.26 91.84

The experimental results are presented in Table 8. The results demon-
strate that PlantCaFo and PlantCaFo* consistently outperform CaFo-Base
across all shot settings when simple prompts are used. The performance
gap increases with the number of shots, suggesting that even with simple
text prompts, our model still has better capabilities in understanding and
utilizing text information.

3.4. Visualization of the DCon-Adapter

To better explain the impact of the DCon-Adapter on the model's
superior performance, we use Smooth Grad CAM++ [67,68] to visualize
the feature attention maps of selected images. These maps intuitively
show the image pixel positions that the model focuses on when identi-
fying plant leaf diseases. We conduct visualizations on 16 samples and
compare them with those of other models.

As shown in Fig. 9, the three subfigures from left to right represent the
original image, the attention map of CaFo-Base, and the attention map of
PlantCaFo. The brighter the color is, the greater the contribution of that
area to the classification. The second column of the figure shows that
CaFo-Base focuses on the most discriminative parts of the leaf or disease

Plant Phenomics 7 (2025) 100024

features. In contrast, as evident from the third column, PlantCaFo not
only attends to the disease features but also effectively filters out irrel-
evant features after processing by the DCon-Adapter. Importantly, how-
ever, owing to the model's ability to recognize a wide variety of plant
species and diseases, the attention maps generated by PlantCaFo are not
as finely tuned or specific as those generated by models trained on a
single plant disease or species. This finding is particularly evident when
attention maps across different plants with similar disease symptoms are
compared. As shown in the attention maps of CaFo-Base and PlantCaFo
for the first and second samples, PlantCaFo tends to focus on the entire
plant leaf, which may include both relevant and less relevant areas. While
this approach enhances the model's ability to generalize across a diverse
set of plant diseases, it may result in less precise attention for individual
plant species, as the model must balance multiple features from different
plants.

Nonetheless, this capability is crucial for fine-grained classification
tasks, such as leaf disease identification across multiple plant species. In
these tasks, different plants may exhibit similar disease characteristics,
making them difficult to distinguish based on disease features alone. This
saliency map demonstrates the improvement achieved by the DCon-
Adapter while highlighting the trade-off between specialization and
generalization when diverse datasets are used.

4. Conclusion
In this study, we propose PlantCaFo, an efficient few-shot learning

model for plant leaf disease identification that is based on foundation
models and is specifically designed for data-limited agricultural

Fig. 9. Visualization of some plants via different models. (A) Original, (B) CaFo-Base, and (C) PlantCaFo.
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scenarios. Our approach incorporates several key components: (1) a
DCon-Adapter to enhance image feature representation, (2) a WDM to
promote image-text interaction, and (3) the application of PlantCaFo and
PlantCaFo* in practical scenarios demonstrates the effectiveness of the
first two proposed methods. Extensive experiments demonstrate that
these methods not only achieve leading results in few-shot learning but
also exhibit high efficiency. Furthermore, we introduce a dataset
comprising 21 categories from real-world agricultural scenarios. This
dataset can serve as an out-of-distribution benchmark for future few-shot
learning experiments, allowing researchers to test their model's gener-
alization ability. This work contributes to advancing the field of agri-
cultural Al particularly in scenarios where data availability is limited.
However, there are certain limitations to our approach. While
PlantCaFo demonstrates strong performance in controlled environments,
its ability to generalize to highly diverse and complex agricultural sce-
narios may be limited because of the inherent challenges in handling
variations in plant disease appearance and image quality. The use of the
DCon-Adapter, while improving the feature extraction process, still faces
difficulties in capturing all fine-grained disease patterns across different
plant species. Additionally, although our approach works effectively on
out-of-distribution datasets, the performance gap between different
datasets, especially those with complex backgrounds or rare diseases,
suggests that further improvements in model robustness are needed.
We propose several potential directions for future work: (1)
Designing hierarchical models: For complex plant disease recognition
tasks, a hierarchical model architecture can be designed to classify plants
and diseases at different levels. The first layer can perform coarse clas-
sification (e.g., plant type recognition), whereas the second layer can
further identify specific diseases. (2) Designing specialized adapters
for different plant disease categories: Future work could explore the
design of multiple, task-specific adapters for plant disease recognition. By
categorizing plant diseases into broader groups, distinct adapters can be
tailored for each category, enabling the model to learn more specialized
features. This modular approach may improve the performance on
diverse disease types and enhance the model's ability to generalize across
different categories. (3) Designing an adapter trained via meta-
learning: By leveraging the concept of meta-learning, an adapter that
can adapt quickly to few-shot tasks can be designed. Through training on
multiple tasks, the meta-learning model can learn how to adjust the
adapter's parameters more effectively, thereby demonstrating stronger
adaptability and generalization abilities for new plant disease tasks.
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