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Note S1. Theoretical deduction of the relationship between Tr and ΔH. 
As shown in fig. S13a, a commercial plant transpiration meter is used to place the tested leaf in a 
sealing chamber to measure the leaf transpiration rate (Tr, mol m-2 s-1). In this open system, the Tr 
equals the additional amount of water vapor leaving the chamber above that entering. Therefore, 
the water vapor produced by the leaf via transpiration is given as(70), 

𝑇𝑇𝑇𝑇 = 𝑢𝑢𝑒𝑒(𝑤𝑤𝑜𝑜−𝑤𝑤𝑒𝑒)
𝑠𝑠(1−𝑤𝑤𝑜𝑜) , 

where 𝑤𝑤𝑒𝑒 and 𝑤𝑤𝑜𝑜 (mol mol-1) are the mole fractions of water vapor (mol of water vapor per total 
of all gases) in the entering and outgoing air streams, respectively, s (m2) is the leaf area, and 𝑢𝑢𝑒𝑒 
(mol s-1) is the total molar flow rate (air plus water vapor) entering the chamber, respectively. 

According to Dalton’s law of partial pressures, which states that the mole fraction of a gas in 
a mixture is equal to its partial pressure, 𝑤𝑤𝑒𝑒  and 𝑤𝑤𝑜𝑜  can be calculated from measurements of 
relative humidity (H, % RH), as in the following equation, 

𝑤𝑤 = 𝐻𝐻 �𝑣𝑣𝑤𝑤,𝑠𝑠𝑠𝑠𝑠𝑠
𝑃𝑃×100

�, 
where 𝑣𝑣𝑤𝑤,𝑠𝑠𝑠𝑠𝑠𝑠 is the saturation water vapor pressure at the temperature of the humidity sensor, P is 
the total air pressure at the humidity sensor. Therefore, the water vapor gradient (∆𝑤𝑤) between the 
entering (𝑤𝑤𝑒𝑒 ) and outgoing (𝑤𝑤𝑜𝑜 ) of the chamber is a positive correlation with the humidity 
difference (∆𝐻𝐻) between the inlet air humidity (𝐻𝐻𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖) and the outlet air humidity (𝐻𝐻𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜), as in 
the following equation, 

∆𝑤𝑤 = (we − wo) ∝ ∆𝐻𝐻 = (𝐻𝐻𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 − 𝐻𝐻𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖). 
Therefore, the equation of 𝑇𝑇𝑇𝑇 can be rearranged as, 

𝑇𝑇𝑇𝑇 = 𝛾𝛾 𝑢𝑢𝑒𝑒∆𝐻𝐻
𝑠𝑠

, 
where 𝛾𝛾 is a correction factor. As the 𝑢𝑢𝑒𝑒 and s is constant during the transpiration measurement, 
the 𝑇𝑇𝑇𝑇 is theoretically determined by the ∆𝐻𝐻. 

In our design, the soft sensor patch was attached to the leaf’s epidermis to form a gap chamber 
for collecting the variation of leaf humidity (𝐻𝐻𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙) via its T&H sensor, as shown in fig. S13b. 
Also, the environment humidity (𝐻𝐻𝑒𝑒𝑒𝑒𝑒𝑒) is recorded by the T&H sensor located on the FPCB. 
Therefore, according to the above theory deduction, the 𝑇𝑇𝑇𝑇 is theoretically related to the humidity 
difference (ΔH) between the 𝐻𝐻𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 and 𝐻𝐻𝑒𝑒𝑒𝑒𝑒𝑒, which can be expressed as, 

𝑇𝑇𝑇𝑇 ∝ 𝛥𝛥𝛥𝛥 =  𝐻𝐻𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 −  𝐻𝐻𝑒𝑒𝑒𝑒𝑒𝑒. 
Briefly, this principle presents a new indicator for measuring leaf transpiration rate (𝑇𝑇𝑇𝑇) by 

recording in-situ leaf humidity (𝐻𝐻𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙) and environmental humidity (𝐻𝐻𝑒𝑒𝑒𝑒𝑒𝑒). 



Note S2. Workflow of the ML-powered diagnostic framework 
To comprehensively analyze real-time T&H and spectral data from the leaf and surrounding 
environment, we designed an ML-powered diagnostic framework, consisting of the THD and 
SDM (fig. S14). The framework operates in two stages for analyzing multimodal sensor 
information as follows. 

In Stage 1, the THD was used to identify outliers in T&H data of leaves and the environment 
caused by heat, drought, and senescent conditions. The regulations are set as follows. 

(1) If the leaf temperature (𝑇𝑇𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙) or the environmental temperature (𝑇𝑇𝑒𝑒𝑒𝑒𝑒𝑒) exceeds 35℃, the
THD will assess that the plant is under heat stress, reminding researchers to cool down the 
cultivation environment.  

(2) The maximum humidity difference (∆𝐻𝐻𝑚𝑚𝑚𝑚𝑚𝑚) within a day can be calculated as,
∆𝐻𝐻𝑚𝑚𝑚𝑚𝑚𝑚 = 𝑚𝑚𝑚𝑚𝑚𝑚{𝐻𝐻𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 − ∆𝐻𝐻𝑒𝑒𝑒𝑒𝑒𝑒}. 

Therefore, if the ∆𝐻𝐻𝑚𝑚𝑚𝑚𝑚𝑚 is lower than 10% RH, the THD will first diagnose that the plant is 
under drought stress and remind researchers to water the plant. Subsequently, if the ∆𝐻𝐻𝑚𝑚𝑚𝑚𝑚𝑚 
remains at a low level on the following day, the THD would diagnose the tested leaf as undergoing 
a senescent process. 

Until T&H data are determined to be within normal ranges, the framework proceeds to Stage 
2 for further analysis. 

In Stage 2, the environmental incident spectra (𝐼𝐼𝑒𝑒𝑒𝑒𝑒𝑒) and leaf transmission spectra (𝐼𝐼1, 𝐼𝐼2) 
were both inputs to the SDM for classifying plant stresses, including health status, nutrient 
deficiencies (N, P, K), and mite attacks. 

First, two points of the spectral transmittance (𝑇𝑇𝑠𝑠(1),𝑇𝑇𝑠𝑠(2)) were calculated as, 
𝑇𝑇𝑠𝑠(𝑖𝑖),(𝑖𝑖=1,2) = 𝐼𝐼𝑖𝑖/𝐼𝐼𝑒𝑒𝑒𝑒𝑒𝑒. 

After normalizing of 𝑇𝑇𝑠𝑠(1) and 𝑇𝑇𝑠𝑠(2), two sets of normalized spectral transmittance {𝑇𝑇�𝑠𝑠1,𝑇𝑇�𝑠𝑠2} 
were contacted to form an integration array (𝑇𝑇�𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖). Then, the 𝑇𝑇�𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 was input into the SDM for 
diagnostic results output.  

The pseudocode for the algorithms of the ML-powered diagnostic framework is as follows. 

Algorithm 1 THD 
Input: real-time input 𝑻𝑻𝒆𝒆𝒆𝒆𝒆𝒆, 𝑻𝑻𝒍𝒍𝒍𝒍𝒍𝒍𝒍𝒍, 𝑯𝑯𝒆𝒆𝒆𝒆𝒆𝒆, 𝑯𝑯𝒍𝒍𝒍𝒍𝒍𝒍𝒍𝒍 on every test day 
Output: state of heat, drought, and senescence 
Initialize: flag ← 0 
∆𝐻𝐻𝑚𝑚𝑚𝑚𝑚𝑚 ← max{𝑯𝑯𝒍𝒍𝒍𝒍𝒍𝒍𝒍𝒍 − 𝑯𝑯𝒆𝒆𝒆𝒆𝒆𝒆}  // calculate the maximum humidity difference in one day 
if 𝑇𝑇𝑒𝑒𝑒𝑒𝑒𝑒 | 𝑇𝑇𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 >= 35 ℃ then  // 𝑇𝑇𝑒𝑒𝑒𝑒𝑒𝑒 or 𝑇𝑇𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 above the threshold  

return Heat 
else if ∆𝐻𝐻𝑚𝑚𝑚𝑚𝑚𝑚 < 10% RH and flag = 0 then  // ∆𝐻𝐻𝑚𝑚𝑚𝑚𝑚𝑚 below the threshold 

flag ← 1 
return Drought 

else if ∆𝐻𝐻𝑚𝑚𝑚𝑚𝑚𝑚 < 10% RH and flag = 1 then  // ∆𝐻𝐻𝑚𝑚𝑚𝑚𝑚𝑚 still below the threshold on the other 
day 

return Senescence 
else 

flag ← 0 
go to Algorithm 2 

end if 



Algorithm 2 SDM 
Input: real-time spectra data: 𝑰𝑰𝒆𝒆𝒆𝒆𝒆𝒆, 𝑰𝑰𝟏𝟏, 𝑰𝑰𝟐𝟐 
Output: state of health, nutrient deficiency (N, P, K), and mite attacks 
𝑻𝑻𝒔𝒔(𝒊𝒊),(𝒊𝒊=𝟏𝟏,𝟐𝟐) ← 𝑰𝑰𝒊𝒊/𝑰𝑰𝒆𝒆𝒆𝒆𝒆𝒆  // spectral transmittance  
𝑻𝑻�𝒔𝒔𝒔𝒔,(𝒊𝒊=𝟏𝟏,𝟐𝟐) ←

𝑠𝑠(𝑚𝑚)

∑ 𝑠𝑠(𝑡𝑡)
8
𝑡𝑡=0

, 𝑚𝑚 ∈ [415, … ,680]  // normalize of spectral transmittance 

𝑻𝑻�𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊 ← {𝑻𝑻�𝒔𝒔𝒔𝒔, 𝑻𝑻�𝒔𝒔𝒔𝒔}  // contact two normalized spectral transmittances 
Load SDM    // load the trained ML model of SDM 
Predictions ← SDM.Predict(𝑻𝑻�𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊) 
return Predictions 



Note S3. The classification mechanism of SDM 
In general, the ML classification models can provide prediction probability for each class by 
assessing the likelihood of input spectral data belonging to each class. The classification 
probability is generally represented as 𝑷𝑷(𝒌𝒌 ∣ 𝒙𝒙), denoting the probability that the input vector 𝒙𝒙 
belongs to class 𝒌𝒌. Moreover, the form of 𝑷𝑷(𝒌𝒌 ∣ 𝒙𝒙) varies depending on the classification model.  

The SDM was established by ensemble learning strategy(71), which integrates seven base ML 
classification estimators to fully exploit the ability of these base estimators, including Logistic 
Regression (LR), Extra Trees (ET), AdaBoost, Support Vector Classifier (SVC), Random Forest 
(RF), Gradient Boost (GB), and Decision Tree (DT). Each of these models has a predefined 
probability function, as summarized in table S5. 

The classification process of processing new spectral data is illustrated in fig. S19, which 
contains the following steps: 

(1) Individual prediction probability generation.
When new spectral data is input into the SDM, each base estimator generates their

classification prediction probability in five classes, represented as: 

𝑷𝑷𝒏𝒏 =

⎣
⎢
⎢
⎢
⎡
𝑃𝑃𝑛𝑛(𝑘𝑘1 ∣ 𝑥𝑥)
𝑃𝑃𝑛𝑛(𝑘𝑘2 ∣ 𝑥𝑥)
𝑃𝑃𝑛𝑛(𝑘𝑘3 ∣ 𝑥𝑥)
𝑃𝑃𝑛𝑛(𝑘𝑘4 ∣ 𝑥𝑥)
𝑃𝑃𝑛𝑛(𝑘𝑘5 ∣ 𝑥𝑥)⎦

⎥
⎥
⎥
⎤

, 

where 𝑷𝑷𝒏𝒏  is a 5-dimensional column vector containing the predicted probabilities from base 
estimator 𝑛𝑛, and 𝑃𝑃𝑛𝑛(𝑘𝑘𝑖𝑖 ∣ 𝑥𝑥) represent the likelihood that the input vector 𝑥𝑥 belongs to class 𝑘𝑘𝑖𝑖. 

(2) Soft voting for weighted aggregation.
These individual probabilities are weighted and aggregated using a soft voting strategy to

generate the final prediction probability. Therefore, the aggregated output probability for class 𝑘𝑘𝑖𝑖 
is given by: 

𝑃𝑃𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜(𝑘𝑘𝑖𝑖 ∣ 𝑥𝑥) = ∑ 𝑤𝑤𝑛𝑛7
𝑛𝑛=1 ⋅𝑃𝑃𝑛𝑛(𝑘𝑘𝑖𝑖∣𝑥𝑥)

∑ 𝑤𝑤𝑛𝑛7
𝑛𝑛=1

, 

where 𝑃𝑃𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜(𝑘𝑘𝑖𝑖 ∣ 𝑥𝑥) is the aggregated probability that the ensemble assigns input 𝑥𝑥 to the class 
𝑘𝑘𝑖𝑖, 𝑤𝑤𝑛𝑛 is the weight assigned to classifier 𝑛𝑛, indicating its contribution to the ensemble prediction. 
Therefore, this formula calculates a weighted average of the probabilities for class 𝑘𝑘𝑖𝑖 across all 
classifiers, ensuring that classifiers with higher weights contribute more to the final prediction. 
Also, the weights of different classifiers can be optimized to obtain a high accuracy. 

(3) Final diagnostic result output.
Finally, the diagnostic result is determined by selecting the class with the maximum

probability among all predicted classes, which is defined as follows, 
𝑘𝑘� = argmax

𝑘𝑘𝑖𝑖
𝑃𝑃output(𝑘𝑘𝑖𝑖 ∣∣ 𝑥𝑥 ), 

where 𝑘𝑘� is the final diagnostic class result for new input spectral data. 
Therefore, the ML-diagnostic framework can both output the diagnosis probability of each 

class and the final classification class. 



Note S4. Performance evaluation of the SDM 
The classification performance of SDM was conducted by compared with other common deep 
learning (DL) approaches, such as CNNs, LSTMs, and Bi-LSTMs. The details of evaluation 
metrics (including average accuracy, F1-score, 10-fold cross-validation, and training time) are 
summarized in table S6. Based on the results, the advantages of SDM over other DL approaches 
are as follows. 

1. Robustness and generalization: The SDM demonstrates greater robustness in diagnosis,
whereas deep learning models tend to exhibit overfitting or underfitting. The reason is that SDM 
has significantly fewer parameters, making it more suitable for generalization with a small training 
dataset (2742 spectral sequences of 500 leaves) than DL methods. 

2. Suitability for tabular spectral data: As a tree-based model, the SDM is well-suited for
classifying the tabular spectral data, whereas deep learning models may struggle to efficiently 
capture these interactions. 

3. Lower training time: The SDM requires significantly less training time compared to deep
learning methods, enhancing its practicality and applicability. 



Note S5. Calculation of leaf pigment contents 
As the leaf pigments (including chlorophyll, carotenoids, and anthocyanins) possess specific 
spectral features, their contents can be calculated from the spectral reflectance(46), as shown 
following, 

chlorophyll = 𝑅𝑅800−𝑅𝑅680
𝑅𝑅800+𝑅𝑅680

, 

carotenoid/chlorophyll = 𝑅𝑅531−𝑅𝑅570
𝑅𝑅531+𝑅𝑅570

, 

anthocyanin = ∑ 𝑅𝑅𝑖𝑖699
𝑖𝑖=600

∑ 𝑅𝑅𝑖𝑖599
𝑖𝑖=500

, 

where 𝑅𝑅𝑥𝑥  refers to spectral transmittance at wavelength x nm. Therefore, according to the 
reflectance results in fig. S46, pigment contents of leaves in different health statuses can be 
calculated. 



Fig. S1. Details of the soft sensor patch: (a) Front view, (b) Backside view, (c) Schematic 
illustrating the exposed sensing hole of the sensor component, which is not covered by the MG-
PDMS substrate, and (d) Schematic depicting the FPCB board extending sensor component pins 
for easier alignment with the LM circuit. [Photo credit: Q.J., HUST] 



Fig. S2. Characteristics of the MG-PDMS substrate. (a) Photo and schematic of the components 
encapsulated in the MG-PDMS substrate. (b) Young’s modulus and strain response to different 
curing agents rations in PDMS substrate. (c) Stress-strain curves of MG-PDMS and PDMS 
substrate. (d) Comparison of MG-PDMS and PDMS substrates encapsulated with resistors under 
strain. The MG-PDMS substrate withstands up to 110% strain, while the PDMS substrate fails at 
50% strain. (e) Stress distribution simulation results for MG-PDMS and PDMS both under 50% 
strains. (f) Resistance measurement of a resistor integrated into the MG-PDMS structure during a 
5000-cycle mechanical loading test at 50% strain and 0.5 Hz. The device’s resistance increased 
slightly from 3.94 ohm (Ω) to 4.08 Ω after 5000 cycles (details in fig. S47). 

Experimental details: Tensile tests of the MG-PDMS and PDMS specimens were conducted with 
a universal tensile test instrument (1 kN, 5944, Instron) at a 100 mm/min strain rate at room 
temperature. The cyclic mechanical loading test was conducted using a dynamic mechanical test 
system (E1000, Instron) through a program (50% strain, 0.5 Hz, 0.5 mm s-1) for 5000 times cycling. 
The resistance change of specimens was measured by a digital multimeter (34, 461A, KeySight 
Technologies) at a 10 Hz measurement frequency. The simulation was conducted using COMSOL 
5.6a. 



Fig. S3. Photos of the hairs on the adaxial and abaxial surface of a tomato leaf. Long hairs 
primarily grow on the adaxial surface of tomato leaves, while the abaxial side—where the soft 
sensor patch is attached—has only soft, short hairs. [Photo credit: Q.J., HUST] 



Fig. S4. Adhesion characteristics of the adhesion layer. (a) The energy release rate of adhesion 
layers (S3-PDMS) on the abaxial leaf surface in response to varying dosages of PEIE. (b) Photos 
showing the soft patch peeling from the abaxial leaf surface. (c-e) Photos of the adhesion 
characteristics of the S3-PDMS with different PEIE contents: (c) The S3-PDMS with 20 µL/g of 
PEIE content shows insufficient adhesion, detaching easily from the leaf surface. (d) The S3-
PDMS with 30 µL/g of PEIE content has sufficient adhesion force to adhere to the leaf surface for 
3 days, without causing damage to the leaf after the soft patch is removed. (e) The S3-PDMS with 
40 µL/g of PEIE content has excessive adhesion force that can generate damage to the leaf surface 
after being peeled off. (f) Energy release rate variation of the adhesion layer with 30 µL/g PEIE 
content under cyclic peeling. After 10 peeling cycles, the adhesion layer exhibits a significant 
decline in energy release rate, similar to that of the 20 µL/g PEIE content, making it easier to 
detach from the leaf. This result indicates that the adhesion layer can maintain repeated adhesion 
for approximately 10 cycles. (g) Photos of the static angle of water droplet on the adhesion layer 
before and after 5 minutes, indicating its hydrophobic and water-resistant properties.  

Experimental details: Energy release rate measurement was based on an international standard 
test method for 90° peeling resistance of energy release rate (ASTM D 6862-2004) and a test 



method for peeling strength of pressure-sensitive tape (GB/T 2792-1981). The adhesion force was 
conducted with a homemade measurement setup of a force transducer at a peeling speed of 100 
mm s−1. The soft patches were cut into a rectangle shape (length: 60 mm, width: 10 mm, and 
thickness: 200 µm). After the soft patch was laminated on the abaxial leaf surface, a roller was 
employed to ensure the attachment tightly and evenly before the peeling test. The energy release 
rate (𝐺𝐺) is defined as 𝐺𝐺 = 𝐹𝐹/𝑤𝑤, where the 𝐹𝐹 refers to adhesion force and the 𝑤𝑤 refers to the width 
of samples. 

Referring to our previous work(72), the S3-PDMS layer was fabricated by adding ethanol-
diluted polyethyleneimine ethoxylated (PEIE) solution (volume fraction: 5 vol%) into a PDMS 
mixture (20:1 ratio of curing agent to silicone base). In the experiment, the S3-PDMS was prepared 
with the PEIE variation of 200, 300, and 400 µL in 10g of the PDMS mixture. Then, the S3-PDMS 
coating was applied to the soft patch surface and cured at 75°C for two hours. 



Fig. S5. Photos of the spatial distribution of sensors at different views after attachment to the 
leaf.  



Fig. S6. Comparison of spectral transmittance collected by the spectrophotometer and 
spectral sensor. (a) Spectral transmittance of leaves in different health statuses, recorded by the 
spectrophotometer. Transmittance values at specific wavelengths (415, 445, 480, 515, 550, 590, 
630, and 680 nm) were selected and normalized for further comparison. (b) Comparison of 
normalized spectral transmittance for various leaf types, measured with the spectrophotometer 
(dashed lines) and the spectral sensor component (solid lines). 



Fig. S7. Photos of stomatal status on leaves under healthy, drought-stressed, and senescent 
conditions. Stomata are marked by dash circles, and the number of stomata within each image is 
labeled.  



Fig. S8. Design of the gap between the T&H sensor and leaf to prevent water vapor 
accumulation. (a) Illustration of the T&H sensor attached to a leaf, showing the adhesion layer 
surrounding the sensor (top view) and creating a gap between the leaf and sensor (side view). (b) 
Photos of the T&H sensor attached to the abaxial leaf surface. 



Fig. S9. Transpiration rate measurement of tomato leaves. (a) Photo of the outdoor 
transpiration rate measurement using a soft T&H sensor and a commercial plant transpiration rate 
meter. A soil water content (SWC) meter probe is inserted into the soil to monitor its water content. 
(b) Photos showing the crease and break area on the leaf caused by the commercial plant
transpiration rate meter after a one-day test. [Photo credit: Q.J., HUST]



Fig. S10. Continuous 10-day outdoor measurement of T&H for both leaf and surrounding 
environment. The outdoor weather conditions vary by weather (sunny, rainy, cloudy) and time 
(day/night). When the plant is under drought stress, the ΔHmax shows lower than 10 %RH. SWC: 
Soil water content. 



Fig. S11. Photos showing the tomato plant in healthy and drought-stressed conditions. 
Despite branches wilting under drought stress, the T&H sensor remains conformally attached to 
the tested leaf. SWC: Soil water content. [Photo credit: Q.J., HUST] 



Fig. S12. Sequential photos depicting the gradual senescence of a tomato leaf. 



Fig. S13. Diagram showing the measuring method of plant transpiration rate (Tr). (a) 
Schematic of a commercial transpiration meter for measurement of Tr measurement. 𝑢𝑢𝑒𝑒 and 𝑢𝑢𝑜𝑜 
denoted the air flow rate (mol s-1) entering and exiting the leaf chamber, respectively, while 𝑤𝑤𝑒𝑒 
and 𝑤𝑤𝑜𝑜 represent the mole fractions of water vapor at the inlet and outlet. The inlet and outlet 
humidity (𝐻𝐻𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 and 𝐻𝐻𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜) are monitored using humidity sensors. (b) Schematic showing soft 
sensor patch that collects T&H data from the leaf and surrounding environment during 
transpiration. The leaf-surface surrounding humidity (𝐻𝐻𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙) and ambient humidity (𝐻𝐻𝑒𝑒𝑒𝑒𝑒𝑒) are 
collected by the T&H sensors. 



Fig. S14. Workflow of the ML-powered diagnostic framework. The framework consists of two 
modules: THD and SDM. In Stage 1, the THD analyzes outliers in T&H data caused by plant 
stresses like heat, drought, and senescence. Until the T&H data is normal, the framework proceeds 
to Stage 2. In Stage 2, the spectral data from the leaf and environment are input into the SDM to 
classify plant statuses, including health, nutrient deficiencies (N, P, K), and mite attacks.  



Fig. S15. Leaf spectral data affected by drought and senescent stress. (a) Photos showing the 
morphology of leaves and branches transitioning from healthy to drought conditions. (b) Spectral 
transmittance of the leaf under healthy and drought conditions. (c) Photos showing the progression 
of leaf symptoms from healthy to senescent states. (d) Spectral transmittance of the leaf under 
healthy and senescent conditions, showing significant differences between the two states. [Photo 
credit: Q.J., HUST] 



Fig. S16. Diagnostic results of leaf senescence via THD, SDM, and CV method. The results 
show that the THD successfully diagnosed the leaf senescence after the 13th day, as the 𝛥𝛥𝐻𝐻𝑚𝑚𝑚𝑚𝑚𝑚 
gradually drops below 10% RH. In contrast, the SDM and CV methods misdiagnosed the stress as 
N or K deficiency due to interference from leaf senescence. 



Fig. S17. kPCA results showing 3D spatial distribution of raw and processed spectral 
transmittance data. The projected data of raw spectral transmittance fails to be distinguished 
among different labels. In contrast, the processed data can be differentiated by the kPCA, 
illustrating the effectiveness of data processing. Abbreviations: N deficiency (N_de), K deficiency 
(K_de), P deficiency (P_de). 



Fig. S18. Schematic of the SDM development process. 



Fig. S19. Schematic of the ML-powered diagnostic framework for long-term diagnosing 
during gradual stress progression. For instance, under the N-deficient stress, the leaf’s spectral 
data and visual symptoms gradually change over time. The spectral data’s projected position 
(purple circle) in the kPCA space also shifts progressively from the healthy (green region) to the 
N-deficient (cyan region) zone. The diagnostic result is determined by selecting the class with the
highest probability among all predicted classes. The final prediction probability (𝑃𝑃𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 ) is
computed as a weighted sum of the classification prediction probabilities from individual
estimators, where 𝑃𝑃𝑛𝑛  and 𝑤𝑤𝑛𝑛  represents the classification prediction probability and weight
assigned to each estimator 𝑛𝑛, respectively.



Fig. S20. Confusion matrix illustrating the performance of the SDM compared to its base 
estimators in recognizing plant stresses. Results show that the SDM possesses the highest 
prediction accuracy among other base estimators. Logistic Regression (LR), Extra Trees (ET), 
AdaBoost, Support Vector Classifier (SVC), Random Forest (RF), Gradient Boost (GB), and 
Decision Tree (DT). 



Fig. S21. Diagnosis stability of MapS-Wear under (a) wind exposure, (b) water spray, and (c) 
heat conditions, simulating outdoor environmental disturbances. Photos illustrate the tested 
leaf under each condition. Spectral transmittance and T&H data variations under these conditions 
are also provided. Despite these disturbances, the diagnostic probability of health, P(Health), 
remains stable, indicating that MapS-Wear maintains reliable diagnostic performance. 
Abbreviations: Humidity (Hum.), Temperature (Temp.). 



Fig. S22. Customizable soft sensor patch designed for various leaf sizes. (a) Photos showcasing 
soft sensor patches fabricated in multiple dimensions to accommodate different leaf sizes. (b) 
Images showing the attachment of these soft sensor patches to leaves of varying sizes.  



Fig. S23. Photos of leaves under N-deficient stress and subsequent N replenishment. (a-c) 
Sequential photos showing symptom changes in the upper, middle, and lower leaves. (d) Photos 
showing the growth of the tomato plant from day 1 to 31. [Photo credit: Q.J. and X.Z., HUST] 



Fig. S24. Diagnostic results of different leaves under N-deficient stress using MapS-Wear. 
(a-c) Diagnostic probabilities of upper to lower leaf health status under the N-deficient stress and 
subsequent N replenishment, as diagnosed by MapS-Wear. The 𝛥𝛥𝐻𝐻𝑚𝑚𝑚𝑚𝑚𝑚  variations of different 
leaves were also recorded throughout the long-term experiment. The diagnostic threshold means 
that the P(N) reaches the maximum among all other classifications. When the 𝛥𝛥𝐻𝐻𝑚𝑚𝑚𝑚𝑚𝑚 falls below 
10% RH, the system diagnoses the leaf as undergoing senescence. 



Fig. S25. Leaf length variation over 31 days under N-deficient stress, including lower to upper 
leaves and their corresponding left and right-side leaves. 



Fig. S26. Plant height variation during periods of N-deficient stress and subsequent nutrient 
replenishment. 



Fig. S27. Continuous diagnosis of Leaf 2 experienced K-deficient stress and subsequent K 
replenishment. Photos and flow diagrams outline the experiment process, while charts show 
variations in P(K) by MapS-Wear and overall plant K content.  



Fig. S28. Diagnostic results of leaves under K-deficient stress via MapS-Wear. (a-c) 
Diagnostic probabilities of Leaves 1 to 3 in different health statuses under K-deficient stress and 
subsequent K replenishment, as diagnosed by MapS-Wear. The variations in 𝛥𝛥𝐻𝐻𝑚𝑚𝑚𝑚𝑚𝑚 for different 
leaves are also recorded throughout the long-term experiment. The diagnostic threshold 
corresponds to where P(K) reaches its maximum among all other health status classifications. 
When the 𝛥𝛥𝐻𝐻𝑚𝑚𝑚𝑚𝑚𝑚  falls below 10% RH, the MapS-Wear diagnoses the leaf as undergoing 
senescence. 



Fig. S29. Photos of tomato plant leaves under K-deficient stress and subsequent K 
replenishment. (a–c) Sequential photos showing symptom changes in Leaves 1–3. (d) Photos 
illustrating the growth phenotypes of tomato plants from day 1 to day 31. [Photo credit: Q.J. and 
X.Z., HUST]



Fig. S30. Diagnostic results of Leaves 1 to 3 under K-deficient stress using the CV method. 
(a-c) Diagrams showing the diagnostic probabilities of different health statuses by CV method 
over 31 days: (a) For leaf1, symptom changes under K-deficient stress cannot be diagnosed by CV 
method throughout the entire period. (b) For leaf 2, the CV method fails to diagnose K deficiency 
on the 15th day (while MapS-Wear diagnoses it) but becomes diagnoseable on the 25th day. (c) 
For Leaf 3, the CV method cannot diagnose K deficiency on the 9th day (while MapS-Wear 
diagnoses it) but becomes diagnoseable on the 25th day. 



Fig. S31. Performance comparison of MapS-Wear and existing plant soft wearable sensors. 
Our MapS-Wear achieves the earliest detection of plant stresses (10 days) compared to other 
reference works. Unlike other systems that only detect physiological information resulting from 
stress, our MapS-Wear achieves real-time plant physiology detection and stress diagnosis. 



Fig. S32. Overall architecture design of the MapS-Wear. (a) Photo and system architecture 
schematic of the MapS-Wear. The soft sensor patch is connected to the FPCB via a soft cable for 
data transmission and power supply. (b) Schematic diagram illustrating the hardware architecture 
of the MapS-Wear. [Photo credit: Q.J., HUST] 

Experimental details: The FPCB integrates a Bluetooth Low-Energy (BLE) microcontroller 
(NRF52840, Nordic), an Inter-Integrated Circuit (I2C) expander (TCA9548A, Texas Instruments), 
a voltage regulator module (AP2127, Diodes Incorporated), a small Li-ion battery (35×20×14 mm, 
90 mAh), and passive components such as resistors, capacitors, and inductors. The BLE 
communicates with the sensors through the I2C expander and processes the data for transmission 
to mobile phones via Bluetooth at 5-second intervals. 



Fig. S33. Photos of the FPCB-based data sampling module. (a) Top view of the FPCB. (b) Side 
view of the FPCB under bending, showing its good flexibility. The FPCB used polyimide (PI) as 
the substrate with 139 μm thickness, showing its high flexibility. (c) Photos showing the mass 
measurement of the soft sensor patch and the FPCB. 



Fig. S34. Fabrication process of the MG-PDMS structure. The fabrication process of the MG-
PDMS structure integrated with components can be summarized into four main steps: (i) The 
PDMS (Sylgard 184, Dow Corning Corporation) was prepared by mixing the silicone base and 
curing agent at a 20:1 weight ratio. After vacuuming to remove air bubbles, a thin PDMS substrate 
(250 μm thickness) was coated on an aluminum plate using a thin-film scraper. The substrate was 
then semi-cured at 70°C for 20 minutes in an oven. A polyethylene terephthalate (PET) film (100 
μm thickness) was placed on the PDMS substrate and cut with a UV laser (SAMD-03-F0103, 
DPSS) to form outer and inner masks. The LM (Galinstan, 68.5% Ga, 21.5% In, 10% Sn, 
Geratherm Medical AG, Geschwenda) was then spray-printed onto the PDMS substrate to create 
soft circuits. (ii) The inner PET mask was removed to expose the area where modulus adjustment 
was required. A curing agent solution was applied to this area at a ratio of 1 μL mm-2 to modify its 
cross-linking density. The substrate was then fully cured at 70°C for 2 hours to form the bottom 
MG-PDMS structure. After peeling off the outer mask, the component was positioned on the 
modulus-adjusted region and connected to the LM circuit. Copper films (100 nm thickness) were 
added to the LM circuit to form the electrical interface. (iii) PDMS (20:1) was reapplied to 
encapsulate the components and semi-cured at 70°C for 20 minutes. A hollow PET mask was then 
placed on the top PDMS substrate, and the curing agent was dispensed to adjust the modulus 
gradient further, forming the top MG-PDMS. (iv) The entire device was fully cured in the oven at 
70°C for 2 hours. 



Fig. S35. Fabrication process schematics of the soft sensor patch. The whole fabrication 
process can be concluded into the following steps: (i) A PDMS substrate (about 250 µm thickness) 
was coated onto an aluminum plate using a scraper and heated to achieve a semi-cured status. (ii) 
Circuit patterns are laser cut into PET masks. (iii) LM was spray-printed onto the PET mask to 
create a circuit layout. (iv) The sensor components were soldered on small FPCB pads to extend 
their pins, making them more accessible to align with the LM circuit. A curing agent was then 
applied near the components to enhance the modulus of the substrate, forming the bottom MG-
PDMS layer. (v) After removing the outer PET mask, the flexible flat cable (FFC) was connected 
to the LM circuits to form an electrical interface. The device was further encapsulated with PDMS 
and heated until the encapsulation layer became semi-cured. (vi) The curing agent was dropped 
into the hollow PET masks to create the top MG-PDMS substrate. (vii) Excess encapsulation 
material was trimmed away. (viii) An adhesive layer (S3-PDMS) was coated onto the encapsulated 
substrate. The device was subsequently heated at 90 °C for 3 hours to cure the adhesive layer. (ix) 
The soft sensor patch was attached to the abaxial surface of a tomato leaf. 



Fig. S36. Schematics of the hardware circuits. 



Fig. S37. Schematic of tomato plants cultivation environment. 



Fig. S38. Incident light setup for data collection. (a) Schematic and (b) Photos illustrating the 
measurement setup. During data collection, a portable light source is positioned approximately 30 
cm above the tested leaf. A blackout fabric hood is used to block external light interference, 
ensuring consistent and reliable spectral data collection. 



Fig. S39. Diagnostic stability of the MapS-Wear under various external light intensities. (a) 
Diagnostic variation across different light intensities, using healthy leaves as examples. The 
variation (𝜔𝜔 ) is calculated as: 𝜔𝜔 = (𝑃𝑃{𝑖𝑖} − 𝑃𝑃{0})/𝑃𝑃{0} , where 𝑃𝑃{0}  and 𝑃𝑃{𝑖𝑖}  represent the 
probability of the leaf being diagnosed as healthy by MapS-Wear under dark conditions and 
different external light intensities, respectively. When ω exceeds 10%, the diagnostic accuracy is 
significantly affected, indicating that MapS-Wear is unable to provide reliable diagnoses. (b) 
Diagnostic performance of MapS-Wear under different outdoor weather conditions (sunny, cloudy, 
and rainy). The orange shading indicates periods when MapS-Wear provides reliable diagnoses 
under moderate sunlight. 



Fig. S40. Schematic of leaf’s spectral transmittance data collection. The tested leaf is placed 
under a light box emitting stable parallel light. The soft sensor patch is attached to the lower 
epidermis of the leaf to collect two transmission spectra (𝐼𝐼1, 𝐼𝐼2). Simultaneously, the environmental 
incidence light (𝐼𝐼𝑒𝑒𝑒𝑒𝑒𝑒) is also recorded. 



Fig. S41. Schematic process of nutrient content measurement via sap analysis. (i) Two to three 
fresh leaves were collected from tomato plants by using scissors. The leaves were pressed using a 
mortar to extract the sap. Then, 100 µL of sap was transferred into a plastic centrifuge tube using 
a pipette (4640040, Thermo Fisher Scientific). (ii) 10 mL of deionized (DI) water and 0.5 g of 
nanocarbon particles (100 nm diameter) were added to the tube to decolor the sap solution. (iii) 
The solution was shaken thoroughly for clarification and filtered through qualitative filter paper to 
obtain a clarified solution. Three types of solutions were prepared for control measurements: the 
test solution, the standard color solution, and the blank color solution. To prepare the test solution, 
2 mL of clarified sap was mixed with the appropriate reaction reagent (specific to the nutrient type) 
in a tube for the color reaction. The standard color solution was prepared by combining the 
response reagent with a standard nutrient content solution and 2 mL of deionized (DI) water in a 
tube. The blank color solution, serving as a control, was prepared by adding only the reaction 
reagent to 2 mL of DI water. (iv) The prepared solutions were transferred to cuvettes and analyzed 
using a sap analyzer (YT-TR-ZY, YunTang). [Photo credit: Q.J. and X.Z., HUST] 



Fig. S42. Design of the CV framework. (a) Schematic of the diagnostic process of the ResNet-
based CV framework. (b) The loss curve under different training epochs using various ResNet pre-
train models, showing the ResNet-152 achieves the lowest loss after 300 epochs. 

Experimental details:  A total of 500 RGB images of leaves under various stress conditions were 
captured for CV training. Each image had its background removed and was scaled to a uniform 
size of 1500×1000 pixels. Through data augmentation, the training set was expanded to 2500 
images. Subsequently, the entire photo dataset was split into training and test sets at a ratio of 
0.8:0.2. The leaf image was resized into 224×224 for model input. The pre-trained ResNet-152 
model, augmented with five fully connected layers, was used as the CV framework. The training 
was conducted on an Nvidia GeForce RTX 3090, with cross-entropy loss minimized using the 
Adam optimizer (learning rate: 0.0001). The batch size was set to 32, and the model was trained 
for 300 epochs.  



Fig. S43. Confusion matrix illustrating the performance of the CV method using different 
frameworks. The result shows that the ResNet-152-based framework achieves the highest 
prediction accuracy among other frameworks. 



Fig. S44. Cultivating environment of grafted tomatoes. (a) Photo of the grafted tomato seedling 
being transplanted to the soil. (b) Map showing the cultivation environment of grafted tomatoes. 
Sample collection was conducted in greenhouses highlighted by yellow dashed boundary lines. (c) 
Photos illustrating the high-throughput screening of grafted varieties within greenhouse settings. 
[Photo credit: Q.J., HUST] 



Fig. S45. Health Levels of Leaves in the Greenhouse. (a) Raincloud plot showing nutrient 
content (N, P, K) corresponding to different health levels of plants. The center circle indicates the 
mean value (labeled), the black line shows the standard deviation range, hollow dot presents the 
raw data. Plant sampling numbers for each health level are provided. (b) Photos of leaves classified 
into health levels 1–4, illustrating the progressive deterioration of the leaf health status. [Photo 
credit: Q.J., HUST] 



Fig. S46. Spectral reflectance of leaves in various health statuses. 



Fig. S47. Details of the 5000-cycling strain test of MG-PDMS structure. The MG-PDMS 
structure integrated with a resistor (3 Ω) is subjected to a 5000-cycle strain test at 50% strain and 
a frequency of 0.5 Hz.  



Table S1. Comparison of different methods for tomato plant stress diagnosis. 

Methods Ref. Accuracy Samples 
number Classifications Classification of diseases Algorithms 

CV 

(50) 98.4 % 18160 10 Health, bacterial Spot, 
Early Blight, etc. CNN 

(51) 99.53 % 7000 3 
Early Blight, Septoria Leaf 
Spot, Yellow Leaf Curl 
Virus 

DCNN, ResNet-50 

(52) 99.98 % 6218 5 Health, Late Blight, 
Bacterial Spot, etc. 

ICRMBO-CNN 
+VGG16

(53) 92.5 % 8927 11 Health, Leaf Mold, Gray 
Mold, etc. 

Deep Neural Network 
+ LSTM

(54) 98.19 % 16012 10 Bacterial spot, Early blight, 
Late blight, etc. TomConv 

(55) 97.11 % 16012 10 Bacterial spot, Early blight, 
Late blight, etc. C-GAN

Spectroscopy 

(56) 90.7 % 354 2 Bacterial Wilt, Healthy GA+SVM 

(57) 85 % 3478 3 Pst, Xeu, Healthy SVM 

(58) 91.6 % 284 2 S. sclerotiorum Disease,
Healthy SNV-SVM 

(59) 92 % 3877 6 Anthracnose, Early Blight, 
Healthy, etc. Ridge classifier 

VOC 

(60) 86.7 % 60 2 Health, Aphid Infestation PCA 

(61) 87.4 % 30 2 Healthy, Whitefly 
Infestation PCA, HCA 

(62) 95.4 % 65 4 Health, P. infestans, Early 
Blight, Septoria Leaf Spot PCA 

(63) 95.7 % 147 4 Health, P. infestans, Gray 
Mold, Early Blight PCA 

This work 99.2 % 500 7 
Health, Drought, Heat, N, 
P, K deficiencies, Spider 
mites attack 

Ensemble learning 



Table S2. Diagnostic result of healthy status of grafted tomato from sap analysis and MapS-
Wear. If the diagnostic categories identified by MapS-Wear align with those from sap analysis, 
the result is recorded as “Yes” for accuracy. 

Plant 
Sap analysis 

result 

MapS-Ware 
diagnostic 

result 
Accuracy Plant 

Sap analysis 
result 

MapS-Ware 
diagnostic 

result 
Accuracy Plant 

Sap analysis 
result 

MapS-Ware 
diagnostic 

result 
Accuracy 

#1 Health Health √Yes #18 
N, P 

deficiencies 
N deficiency √Yes #35 Health 

K, N 
deficiencies 

×No 

#2 Health Health √Yes #19 Health Health √Yes #36 Health Health √Yes

#3 Health Health √Yes #20 Health 
N, K 

deficiencies 
×No #37 

N, P, K 
deficiencies 

K deficiency √Yes

#4 
N, P, K 

deficiencies 
N, P, K 

deficiencies 
√Yes #21 Health Health √Yes #38 

N, P, K 
deficiencies 

N, K 
deficiencies 

√Yes

#5 Health K deficiency ×No #22 Health Health √Yes #39 N deficiency 
K deficiency, 

Health 
×No 

#6 Health Health √Yes #23 
P, K 

deficiencies 
P, K 

deficiencies 
√Yes #40 

N, P, K 
deficiencies 

K, N 
deficiencies 

√Yes

#7 Health Health √Yes #24 
N, P, K 

deficiencies 
K deficiency √Yes #41 Health Health √Yes

#8 Health Health √Yes #25 K deficiency K deficiency √Yes #42 Health K deficiency ×No 

#9 
N, P, K 

deficiencies 
N, K 

deficiencies 
√Yes #26 

P, K 
deficiencies 

K deficiency √Yes #43 
N, K 

deficiencies 
N, K 

deficiencies 
√Yes

#10 
N, P, K 

deficiencies 
N, P, K 

deficiencies 
√Yes #27 Health Health √Yes #44 Health Health √Yes

#11 
N, P, K 

deficiencies 
N, K 

deficiencies 
√Yes #28 

N, P, K 
deficiencies 

K deficiency √Yes #45 
N, K 

deficiencies 
N, K 

deficiencies 
√Yes

#12 
N, P, K 

deficiencies 
N, K 

deficiencies 
√Yes #29 Health Health √Yes #46 

N, K 
deficiencies 

N, K 
deficiencies 

√Yes

#13 
N, P, K 

deficiencies 
K deficiency √Yes #30 

P, K 
deficiencies 

K deficiency √Yes #47 
N, P, K 

deficiencies 
N, K 

deficiencies 
√Yes

#14 
N, P, K 

deficiencies 
N, K 

deficiencies 
√Yes #31 

N, P, K 
deficiencies 

N, K 
deficiencies 

√Yes #48 Health K deficiency ×No 

#15 
N, P, K 

deficiencies 
K deficiency √Yes #32 

N, P, K 
deficiencies 

N, K 
deficiencies 

√Yes #49 N deficiency N deficiency √Yes

#16 
N, P, K 

deficiencies 
K deficiency √Yes #33 

N, P, K 
deficiencies 

N deficiency √Yes #50 
N, P, K 

deficiencies 
K deficiency √Yes

#17 
N, P, K 

deficiencies 
N, K 

deficiencies 
√Yes #34 

P, K 
deficiencies 

K deficiency √Yes



Table S3. Comparison of various soft wearable sensors for plant stress diagnosis. 
Abbreviations: Humidity (Hum.), Temperature (Temp.). 

References This work (37) (35) (41) (33) (32) (34) 
Plant Tomato 14 plants 4 plants 2 plants Tomato Tomato 3 plants 

Physiological 
information 

Temp., 
Hum., 

Transmission 
spectra 

Bioimpedance Temp., 
Strain Bioimpedance Temp., Hum., 

VOCs VOCs Spectral 
reflectance 

Stress types 

7 types 
(Biotic, 
Abiotic) 
Health, 

Drought, Heat, 
Senescence, 

Deficiencies of 
N, P, K, Mite 

attacks 

2 types 
(Abiotic) 
Drought, 

Photodamage 

2 types 
(Abiotic) 

Heat, 
Drought 

3 types 
(Abiotic) 

Heat, Drought, 
Ultraviolet A 

irradiation 

6 types 
(Biotic, Abiotic) 

Mechanical 
injury, Drought, 
Overwatering, 
Salinity, Dark, 

Pathogenic 
infection 

2 types 
(Biotic, 
Abiotic) 

Late blight, 
Mechanical 

damage 

2 types 
(Biotic, 
Abiotic) 

Virus, Dark 

Early 
diagnosis time 

10 days 
(Compared to 
CV method) 

— — — 

2~3 days 
(Compared to 

visual 
assessment) 

4 days 
(Compared to 

visual 
assessment) 

4 days 
(Compared to 
visual color 
difference) 

Diagnostic 
method 

Machine 
learning Manual analysis Manual 

analysis Manual analysis PCA + Manual 
analysis 

PCA + Manual 
analysis 

Manual 
analysis 

Diagnostic 
accuracy 99.2% — — — 

77.4 % 
(Explained 

variance ratio) 

97 % 
(Explained 

variance ratio) 
— 

Result output Real-time Off-line Off-line Off-line Off-line Off-line Off-line 



Table S4. The overall hardware cost of the MapS-Wear. 

Class Quantity Cost ($) 
Components (Resistor, capacity, etc.) 42 0.5 

BLE microcontroller (NRF52840) 1 10 
T&H sensor (SHT41) 2 1.5 

Spectral sensor (AS7341) 3 13 
FPCB 1 3.5 
FFC 1 0.5 

PDMS+LM — 1 
Total 30 



Table S5. Details of prediction probability function in different estimators. 

Estimators Prediction probability functions Parameters explanation 

Logistic 
Regression (LR) 

𝑃𝑃(𝑘𝑘 ∣ 𝑥𝑥) = 1
1+exp(−(𝐰𝐰⊤𝐱𝐱+𝑏𝑏))

𝐰𝐰: Weight vector. 𝑏𝑏: Bias term. 𝐱𝐱: Input feature 
vector. 𝐞𝐞𝐞𝐞𝐞𝐞: Exponential function. 

Decision Tree 
(DT) 𝑃𝑃(𝑘𝑘 ∣ 𝑥𝑥) = 𝑁𝑁𝑘𝑘

𝑁𝑁
 

𝑁𝑁𝑘𝑘: Number of training samples of class 𝑘𝑘 in the 
leaf node where 𝐱𝐱  falls. 𝑁𝑁 : Total number of 
training samples in that leaf node. 

Random Forest 
(RF) 𝑃𝑃(𝑘𝑘 ∣ 𝑥𝑥 ) = 1

𝑇𝑇
∑ 𝑃𝑃𝑡𝑡(𝑘𝑘 ∣ 𝑥𝑥 )𝑇𝑇
𝑡𝑡=1  

𝑇𝑇: Total number of trees in the forest. 𝑃𝑃𝑡𝑡(𝑘𝑘 ∣ 𝑥𝑥): 
Probability estimate for class 𝑘𝑘  from the 𝑡𝑡 -th 
tree. 

Extra Trees (ET) 𝑃𝑃(𝑘𝑘 ∣ 𝑥𝑥) = 1
𝑇𝑇
∑ 𝑃𝑃𝑡𝑡(𝑘𝑘 ∣ 𝑥𝑥)𝑇𝑇
𝑡𝑡=1   

𝑇𝑇: Total number of trees in the ensemble. 𝑃𝑃𝑡𝑡(𝑘𝑘 ∣
𝑥𝑥): Probability estimate for class 𝑘𝑘 from the 𝑡𝑡-th 
tree. 

AdaBoost 
𝑃𝑃(𝑘𝑘 ∣ 𝑥𝑥) = exp(𝐹𝐹𝑘𝑘(𝐱𝐱))

∑ exp𝐾𝐾
𝑗𝑗=1 (𝐹𝐹𝑗𝑗(𝐱𝐱))

,

where 𝐹𝐹𝑘𝑘(𝐱𝐱) = ∑ 𝛼𝛼𝑡𝑡𝑇𝑇
𝑡𝑡=1 ℎ𝑡𝑡𝑘𝑘(𝐱𝐱) 

𝐹𝐹𝑘𝑘(𝐱𝐱) : Weighted sum of weak classifiers’ 
outputs for class 𝑘𝑘 . 𝑇𝑇 : Total number of weak 
classifiers. 𝛼𝛼𝑡𝑡: Weight assigned to the 𝑡𝑡-th weak 
classifier. ℎ𝑡𝑡𝑘𝑘(𝐱𝐱) : Output of the 𝑡𝑡 -th weak 
classifier for class 𝑘𝑘. 

Gradient Boosting 
(GB) 

𝑃𝑃(𝑘𝑘 ∣ 𝑥𝑥) = exp(𝐹𝐹𝑘𝑘(𝐱𝐱))
∑ exp𝐾𝐾
𝑗𝑗=1 (𝐹𝐹𝑗𝑗(𝐱𝐱))

,

where 𝐹𝐹𝑘𝑘(𝐱𝐱) = 𝐹𝐹𝑘𝑘,0 + ∑ 𝑓𝑓𝑡𝑡,𝑘𝑘
𝑇𝑇
𝑡𝑡=1 (𝐱𝐱) 

𝐹𝐹𝑘𝑘(𝐱𝐱): Accumulated prediction for class 𝑘𝑘. 𝐹𝐹𝑘𝑘,0: 
Initial prediction, often set to a constant. 𝑇𝑇 : 
Total number of boosting iterations. 𝑓𝑓𝑡𝑡,𝑘𝑘(𝐱𝐱) : 
Output of the 𝑡𝑡-th weak learner for class 𝑘𝑘. 

Support Vector 
Classifier (SVC) 

𝑃𝑃(𝑘𝑘 ∣ 𝑥𝑥) = 1
1+exp(𝐴𝐴𝐴𝐴(𝐱𝐱)+𝐵𝐵)

𝑓𝑓(𝐱𝐱): Decision function output for input 𝐱𝐱. 𝐴𝐴: 
Parameter learned during Platt scaling. 𝐵𝐵 : 
Parameter learned during Platt scaling.  



Table S6. Performance evaluation of SDM and other deep learning methods. 

Model Accuracy F1-score 10-fold cross-validation Characteristics Training time (s)
CNNs 97.13% 98.19% 94.73% Overfitting 35.67 (150 epochs) 

LSTMs 84.89% 84.66% 69.54% Underfitting 61.44 (150 epochs) 
Bi-LSTMs 81.21% 80.60% 71.52% Underfitting 81.5 (150 epochs) 

SDM(Ours) 99.20% 99.69% 99.09% Balanced 1.81 



Supplementary Movies (separate files)  

Movie S1. An introduction of the MapS-Wear. 
This video illustrates the design and working principle of MapS-Wear, the development of the 
ML-powered diagnostic framework, and the system’s application from lab validation to
agricultural implementation.

Movie S2. Attachment of the soft sensor patch to a tomato leaf. 
This video demonstrates the process for attaching the soft sensor patch to the abaxial surface of a 
live tomato leaf. 

Movie S3. Real-time diagnosis of tomato leaves under various health statuses. 
This video demonstrates a real-time diagnosis of tomato leaves under various health statuses, 
including health, nutrient deficiencies (N, K, P), and mite attacks. 

Movie S4. Graft compatibility evaluation of grafted tomatoes in greenhouses. 
This video demonstrates large-scale compatibility evaluations of grafted tomatoes in greenhouses 
using the MapS-Wear. 
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