第30页习题1.3
题目1:
f(a1,a2,a3)= a1⊕C2, a2⊕C1,a3
当C1=0,C2=0时,有f(a1,a2,a3)= a1
a3 a2 a1 a1
- 0 1 1
- 1 0 0
- 1 1 1
- 0 1 1
有r=3.
当C1=0,C2=1时,有f(a1,a2,a3)= a1⊕a2
a3 a2 a1 a1
1 0 1 1
1 1 0 0
1 1 1 1
0 1 1 1
0 0 1 1
1 0 0 0
0 1 0 0
1 0 1 1
有r=7.
当C1=1,C2=0时,有f(a1,a2,a3)= a1⊕a3
a3 a2 a1 a1
1 0 1 1
0 1 0 0
0 0 1 1
1 0 0 0
1 1 0 0
1 1 1 1
0 1 1 1
1 0 1 1
有r=7.
当C1=1,C2=1时,有f(a1,a2,a3)= a1⊕a2⊕a3
a3 a2 a1 a1
1 0 1 1
0 1 0 0
1 0 1 1
0 1 0 0
1 0 0 0
有r=2.
题目4
答:没有可能为1 ,因为根据题意求得输出序列周期为2,即01010……,且m+2=0,因此当m+3时值不为1.
题目6
答:由已知得:

即有ai+3=C3ai⊕C1ai+2=a1⊕ai+2